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Abstract:

Ubiquitous computing is an emerging research area, posing significant challenges in both theoretical

and technological aspects of middleware systems. Up to today, middleware platforms have

successfully been used for delivering solutions for deployment and management of distributed

applications. However, whilst middleware systems have been deployed within computing

environments interconnected with Local Area or Wide Area Networks, the new ideas the ubiquitous

computing “world” has introduced: a) devices with small size, even invisible, either mobile or

embedded in almost any type of object someone can imagine (cars, appliances, clothes, etc.), and; b)

devices communicating with increasingly interconnected mobile ad-hoc networks, pose new

challenges and requirements for the design and deployment of middleware systems targeting at a

network embedded system. New solutions yet remain to be devised in order to deploy middleware for

heterogeneous, large-scale and continuously changing embedded environments, consisting of devices

with different capabilities and limitations.

The document defines what networked embedded systems are and proposes two taxonomy models for

organising and reviewing existing networked embedded systems. A number of existing middlewares

for networked embedded systems is presented and evaluated, using the dimensions of the two

proposed taxonomy models. The document concludes with a summary of the main achievements of

the presented middlewares and with a discussion of goals that remain unattended.

Keywords: middleware for networked embedded systems; functional and non-functional

requirements; middleware taxonomy; middleware survey
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 Executive Summary

A number of challenging problems are introduced when trying to design and implement distributed

applications operating within a networked embedded system. No assumptions can be made about the

network topology and the available network resources as they can change rapidly; temporary and

unannounced loss of network connectivity happens frequently when mobile nodes move; hosts must

be discovered in an ad-hoc manner; nodes are likely to have scarce resources, such as low battery

power, slow CPU and little memory; the number of nodes operating in a networked embedded

environment can be of orders of magnitude greater than the number of hosts operating within a

distributed system with permanent connections, such as a local area or a wide area computer network.

Networked embedded systems may come in many different forms. The most common scenario which

is, in fact, envisaged in the RUNES project is that of very hybrid networks composed of different

joined subsystems. Our research has shown that there is no middleware readily available for these very

heterogeneous scenarios and that most of the middleware somehow assume a more homogeneous

topology or set of device characteristics.

Middleware platforms form the “glue” between a distributed application’s execution space and the

underlying network operating system, which is used to send messages to remote components,

collaborating with the distributed application. Such remote components can be other distributed

applications, remote servers, computer hardware or sensors collecting data from the environment

where the sensors are embedded. Enabling communication between remote components, located not in

a single machine, but rather deployed within large-scale and heterogeneous networked environments,

is a difficult task due to diverse list of requirements that need to be taken into consideration by the

middleware developers. Scalability, heterogeneity, fault-tolerance, openness and security are some

examples of non functional requirements that need to be addressed when implementing a middleware

platform that can suit the needs of different distributed applications.

On the other hand, a middleware platform resides between a distributed application and the network

operating system. This implies that a number of different functional requirements must be addressed

in order to enable communication between the application that knows nothing about the network

infrastructure and the network itself. Requirements such as event notification, logging, addressing,

discovery, context-awareness are inherently related to the functionality of the system.

We present a survey of middleware systems for networked embedded systems, as we have found in the

literature at the time of writing this document. Using our classification of networked embedded

systems, we analyze the existing solutions. In this survey we consider three types of systems and

review the middleware developed for these different systems. Mobile Systems have been studied for

some time now and can be further subdivided into Nomadic systems and Ad Hoc systems. Nomadic

systems are those containing a core fixed network and some mobile nodes which are usually just

leaves in the network: cellular networks are typical examples of systems with this topology. Ad Hoc

systems have a very decentralized structure where no fixed core exists and where each node may be

mobile. In both cases the type of network links is wireless. Devices change their location continuously,

with different frequency depending on the applications. Embedded Systems are systems assuming

that the computing components are embedded into some other purpose built device (an aircraft or a

car). These systems are most of the time not mobile and very often not networked in large scale, i.e.

only few devices are connected, usually with only one other server machine and most of the time not

to external networks. The type of the connection is often wired. Sensor Systems are often composed

by large numbers of possibly tiny devices which have the sole task of monitoring some conditions

within an environment and report back to a central server. The most common sensor networks are

usually not mobile but the sensors are connected through a radio link. Wireless sensor networks are a

specific but a widely deployed example of networked embedded systems. Both the industry and

academia has recently shown a lot of interest in wireless sensor networks technologies that enable

deployment of a wide range of applications, such as military, environmental monitoring, e-health

applications, etc.
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As the survey shows, in existing networked embedded systems most of the effort has been put on

addressing the requirement of adaptability. However, the adaptation mechanisms of existing

middlewares remain static during their lifetime. This means that it is not possible to use an alternative

adaptation mechanism when different adaptive behavior is required to be performed by the

middleware. For example, it is possible that during the lifetime of a networked embedded system, a

new application is introduced demanding a different type of adaptation than the one offered by the

middleware. For this purpose, a new adaptation mechanism should be selected and configured within

the middleware in order to provide the new type of adaptation required by the application. The

problem of selecting and configuring the new adaptation mechanism becomes more complex

considering the demand for autonomous operation of the middleware. Since it is not possible to

assume human intervention for management of the middleware operating within a networked

embedded system, intelligent mechanisms such as expert systems should be studied to see if they can

operate within the middleware, such as the middleware itself has the capabilities to dynamically

update its adaptation mechanisms.

Another problem that we can see is that although most of the middleware has addressed the

requirement for adaptability, no single middleware exists addressing all the non-functional

requirements of our list. This is due to the assumptions about the application or the types of embedded

devices that the middleware designers have made. For example, some of the work on sensor networks

assumes the existence of a single type of sensors embedded in the environment, thus not addressing

the requirement for heterogeneity. However, in the most general case of a networked embedded

system consisting of many types of devices other than single-type sensors, it is important that the

requirement for heterogeneity is addressed by the middleware.

We can also observe, that the requirement of feasibility has not been adequately addressed by existing

middleware systems. However, considering the resources limitations (in hardware and in network

resources) that are potentially present in a networked embedded system, new mechanisms should be

implemented to ensure that the functions or services that the middleware offers to the application are

feasible to be performed in a given system/network instance.

Taking into account what we have learned from existing middleware solutions, our goal in RUNES is

to create a middleware solution for networked embedded system, which fulfils the identified

requirements and solves the problems we have found in existing approaches.
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1 Introduction

Advances in electronic and wireless technologies, have resulted in the deployment of a wide range of

products with computing and network communication capabilities, other than the personal computers

as we use up to today. Devices with small size, such as mobile phones, personal digital assistants,

digital cameras, sensors for measuring environmental phenomena or medical conditions, etc. are

continuously introduced in everyday life, offering new services to the user of such systems. Whilst the

size of the devices mentioned above is becoming smaller and smaller, their computing capabilities are

growing and so do the capabilities of the networks supporting their communication. This enables the

programmers of networked embedded systems, ie. systems comprised of interconnected embedded

devices, to be able to build new and more powerful distributed applications

A number of challenging problems are introduced when trying to design and implement distributed

applications operating within a networked embedded system. No assumptions can be made about the

network topology and the available network resources as they can change rapidly; temporary and

unannounced loss of network connectivity happens frequently when mobile nodes move; hosts must

be discovered in an ad-hoc manner; nodes are likely to have scarce resources, such as low battery

power, slow CPU and little memory; the number of nodes operating in a networked embedded

environment can be of orders of magnitude greater than the number of hosts operating within a

distributed system with permanent connections, such as a local area or a wide area computer network.

When developing distributed applications, designers do not have to explicitly deal with problems

related to distribution, such as heterogeneity, scalability, resource sharing and fault tolerance.

Middleware developed upon network operating systems provides application designers with a higher

level of abstraction, hiding the complexity introduced by distribution. Existing middleware

technologies, such as transaction-oriented, message-oriented or object-oriented middleware have been

built trying to hide distribution as much as possible, so that the system appears as a single integrated

computing facility. In other words, distribution becomes transparent.

These technologies have been designed and are successfully used for stationary distributed systems.

However, as it will become clearer in the following, some of the requirements introduced by the

dynamic nature of a networked embedded system cannot be fulfilled by these existing traditional

middleware. For example, interaction primitives, such as distributed transactions, object requests or

remote procedure calls, assume a stable, high bandwidth and constant connection between

components. Furthermore, synchronous point-to-point communication supported by object-oriented

middleware systems, such as CORBA [CORBA], requires a rendez-vous between the client asking for

a service, and the server delivering that service. In networked embedded systems, on the contrary,

unreachability is not exceptional and the connection may be unstable. Moreover, it is quite likely that

client and server hosts are not connected at the same time, because of voluntary disconnections (e.g.,

to save battery power) or forced disconnection (e.g., loss of network coverage). Disconnection is

treated as an occasional fault by many traditional middleware; techniques for data-sharing and

replication that have been successfully adopted in traditional systems might not, therefore, be suitable,

and new methodologies need to be explored.

Finally, traditional middleware systems have been designed targeting devices with almost no resource

limitations, especially in terms of battery power. On the contrary, even considering the improvements

in the development of these technologies, resources of embedded devices will always be, by orders of

magnitude, more constrained.

The aim of this survey document is to give an overview of how the requirements usually associated to

distributed systems are affected by the high degree of dynamism and the resources constraints

experienced within a networked embedded system. We provide a framework and a classification of the

most relevant literature in this area, highlighting goals that have been attained and goals that need to

be pursued.
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This survey document is structured as follows. Section 2 describes what network embedded systems

are. Section 3 proposes two taxonomy models for middleware operating within networked embedded

systems. Section 4 contains a detailed review of existing middleware for networked embedded

systems, and finally; section 5 contains a critical analysis of the reviewed middleware systems, using

the taxonomy dimensions introduced in this survey.
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2 Networked Embedded Systems

Networked embedded systems may come in many different forms. The most common scenario which

is, in fact, envisaged in the RUNES project is that of very hybrid networks composed of different

joined subsystems. Our research has shown that there is no middleware readily available for these very

heterogeneous scenarios and that most of the middleware somehow assume a more homogeneous

topology or set of device characteristics.

In this survey we will consider three types of systems and will review the middleware developed for

these different systems:

• Mobile Systems

• Embedded Systems

• Sensor Systems

Mobile Systems have been studied for some time now and can be further subdivided into Nomadic

systems and Ad Hoc systems. Nomadic systems are those containing a core fixed network and some

mobile nodes which are usually just leaves in the network: cellular networks are typical examples of

systems with this topology. Ad Hoc systems have a very decentralized structure where no fixed core

exists and where each node may be mobile. In both cases the type of network links is wireless.

Devices change their location continuously, with different frequency depending on the applications.

Embedded Systems are systems assuming that the computing components are embedded into some

other purpose built device (an aircraft or a car). These systems are most of the time not mobile and

very often not networked in large scale, i.e. only few devices are connected, usually with only one

other server machine and most of the time not to external networks. The type of the connection is often

wired.

Sensor Systems are often composed by large numbers of possibly tiny devices which have the sole

task of monitoring some conditions within an environment and report back to a central server. The

most common sensor networks are usually not mobile but the sensors are connected through a radio

link. Wireless sensor networks are a specific but a widely deployed example of networked embedded

systems. Both the industry and academia has recently shown a lot of interest in wireless sensor

networks technologies that enable deployment of a wide range of applications, such as military,

environmental monitoring, e-health applications, etc.

In this survey we will report on the different middleware that has been implemented for these three

types of systems.
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3 Taxonomy of middleware systems

Middleware platforms form the “glue” between a distributed application’s execution space and the

underlying network operating system, which is used to send messages to remote components,

collaborating with the distributed application. Such remote components can be other distributed

applications, remote servers, computer hardware or sensors collecting data from the environment

where the sensors are embedded. Enabling communication between remote components, located not in

a single machine, but rather deployed within large-scale and heterogeneous networked environments,

is a difficult task due to diverse list of requirements that need to be taken into consideration by the

middleware developers. Scalability, heterogeneity, fault-tolerance, openness and security are some

examples of non functional requirements that need to be addressed when implementing a middleware

platform that can suit the needs of different distributed applications.

On the other hand, as we have already mentioned, a middleware platform resides between a distributed

application and the network operating system. This implies that a number of different functional

requirements must be addressed in order to enable communication between the application that knows

nothing about the network infrastructure and the network itself. Requirements such as event

notification, logging, addressing, discovery, context-awareness are inherently related to the

functionality of the system.

In the following, we will use these categories to distinguish the different existing middleware and

identify the main differences among them.

3.1 Taxonomy with respect to non-functional requirements

As we discussed earlier in this section, a number of requirements should be taken into consideration

when implementing a middleware system. Middleware is itself a distributed system and as such, any

middleware needs to meet the requirements for any type of distributed system, ie. a system

compromised of software and hardware components running/located within different computing

devices and in different locations, providing services to applications by interacting with each other. In

all distributed systems, the interaction between remote software/hardware components is realised by

means of message exchanges over an underlying network infrastructure. A list of requirements for a

distributed system is provided in [Coulouris]. This list includes the requirements of fault-tolerance,

openness, heterogeneity, scalability, resource sharing, transparency, concurrency and security. Our

survey will use the list of requirements discussed in [Coulouris], but it will also point out additional

requirements, which must be also addressed by the middleware programmers. Table I presents the

requirements for a middleware system. We will use these requirements in order to classify and

evaluate middleware systems, according to whether and in what degree a specific middleware meets

each individual requirement.
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Requirement Description

Heterogeneity Components written in different programming languages, running

on different operating systems, executing on different hardware

platforms, should be able to communicate using a middleware

platform. Generally, in a distributed system, heterogeneity is almost

unavoidable, as different components may require different

implementation technologies.

Openness The capability to extend and modify the system, for example, with

respect to changed functional requirements. Adding new services or

re-implementing existing ones should be possible within an open

distributed system.

Scalability The ability of the system to accommodate a higher load at some

time in the future. A system’s load can be measured using many

different parameters, such as the maximum number of concurrent

users, the number of transactions executed in a time unit, etc.

Failure handling The ability to recover from faults without halting the whole system.

Faults happen when software or hardware components fail to

complete their delegated actions/methods, but still any distributed

component must continue to operate even if other components they

rely on have failed.

Security Security mechanisms, such as authentication, authorization, and

accounting (AAA) functions may an important part of the

middleware in order to intelligently control access to computer and

network resources, enforcing policies, auditing network/user usage,

etc.

Performance Performance can constitute a requirement of the middleware in

various situations. For example, a middleware used for a real-time

distributed application should export functions with a minimal, as

possible, execution time, whereas a memory-limited device would

require optimization of the memory usage of the middleware.

Adaptability Changes in applications’ and users’ requirements or changes within

the network, may require the presence of adaptation mechanisms

within the middleware. For example, a different transport protocol

should be chosen by the middleware when a mobile device enters a

network supporting a different transport protocol than the one

offered by the current network hosting the device.

Feasibility Constraints of available resources may limit the feasibility of

performing certain tasks or offering certain services in a given

system/network environment. Mechanisms should be provided to

ensure that a function, task or a service is feasible to be provided in

a given system/network instance.

Table 3.1: Non-functional requirements of a middleware system

Note that the list of requirements included here is not a closed set, i.e. it is possible that the designer of

a middleware wishes to take into consideration additional requirements, such as the requirements for

concurrency and transparency, or pricing criteria. Concurrency is needed when services and

applications provide resources that can be shared by clients in a distributed system. For an object to be

safe in a concurrent environment, its operations should be synchronized in such a way that data

remains consistent. Transparency is defined as the concealment from the user and the application

programmer if the separation of components in a distributed system, so that the system is perceived as
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a whole rather as a collection of independent components. Finally, someone could aim at developing

middleware that minimizes the use of resources associated to pricing, e.g., the number and the duration

of mobile connections needed for certain operations of the middleware system.

In the following, since the scope of this survey is specific to middleware for networked embedded

systems, we will explain in more detail the list of requirements shown in Table 3.1 in the context of a

networked embedded environment, taking into account the particular factors that potentially can

influence the non-functional requirements of the middleware system operating within the networked

embedded environment.

Heterogeneity

Industrial machines, automobiles, medical equipment, cameras, household appliances, airplanes,

vending machines, toys, and recently sensors and actuators (as well as the more obvious cellular

phones and PDAs) are among the myriad possible hosts of an embedded system. As possible,

middleware system should include the necessary abstractions in order to cater for the heterogeneous

nature of a network embedded environment consisting of different types of devices, but cooperating

with the middleware. Moreover, the middleware system should include the flexibility to use the

available communication protocols that are eventually supported by particular devices.

Openness

Implementation of new functionality, or changes of an existing functionality should be possible to be

permitted within the middleware as the set of applications changes or the set of embedded nodes is

updated with new nodes, offering new functionality to the application. Therefore, as in the case of any

distributed system, the middleware should have the capability to be extended and modified during its

lifetime. Moreover, since data should be continuously be provided to the application, especially in the

case of real-time applications, the process of updating or extending the middleware should not require

halting its operation while this is being done.

Scalability

Compared to existing typical distributed systems, whose components communicate either with fixed or

with mobile connections, the number of nodes in a network embedded system can be several orders of

magnitude higher than the nodes in a traditional distributed system, for example a mobile ad hoc

network. For example, in a sensor network, it is quite possible that sensors are densely deployed in a

particular environment. According to the survey in [Akyildiz02], there exist scenarios, where sensors

need to be deployed at a density of approximately 20 nodes/m3, where the size of a single sensor node

is less than 1 cm3. As a consequence, it is important that the middleware scales with respect to the

number of sensor nodes. One solution to this problem has been given that follows a clustering

approach to the design of wireless sensor networks. For example, the LEACH [LEACH] middleware

developed at MIT and the middleware presented in [Y.Yu03], partition the sensor network into

multiple clusters. More information on existing middleware systems will be given in chapter 4 of this

document.

Failure handling

In a network embedded system, some nodes may fail or be blocked to communicate due to lack of

power, or be physically damaged or experience environmental interference. Wireless links used for

communication in the network can fail or experience problems, such as transmission errors due to the

unreliable transmission medium and to the presence of undetected collisions, increased and

unpredictable delay, high packet loss, etc. Therefore, the failures occurring within a network

embedded system are more common and more frequent than in a mobile ad hoc network or a

distributed system with permanent connections between the end-nodes. The failure of individual nodes
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should not affect the overall task of the network embedded system, thus leading to an increased need

for providing mechanisms to ensure fault tolerance to the applications.

Another factor that leads to an increased demand for providing fault tolerance in an embedded

network system is the fact that after its deployment, topology changes are likely to occur due to

changes in sensor nodes’ location, their reachability (due to jamming, noise, moving obstacles, etc.).

Furthermore, additional nodes can be redeployed at any time to replace other nodes and some nodes

can stop functioning due to lack of power. Even in a continuously changing network topology, the

middleware system should be able to perform its tasks and provide reliable services to the application.

Security

Security is a critical, though not broadly addressed, concern in a networked embedded system (eg. a

sensor network), since, apart from traditional attacks, the possibility of physically capturing nodes

adds a novel issue to the security realm.

Performance

Factors such as energy and memory efficiency must be taken into account considering the energy and

memory limitations of the nodes within the network embedded system. For example, as nodes in a

sensor network are battery-operated, energy-efficient mechanisms should be implemented within the

middleware in order to maximize the system’s lifetime. In addition, power-aware protocols should be

selectively chosen and configured in order either to minimize the number of nodes running out of

energy or to maximize the time within which the application can receive the desired level of

information about the phenomenon the application is interested in.

Another performance aspect of the middleware is whether it can satisfy an application’s real-time

requirements. The requirement for a middleware with real-time capabilities should be addressed in

several cases, such as when the middleware is used by applications that wish to receive real-time data

(eg. temperature or seismic vibrations) from a sensor network.

Adaptability

The need to implement adaptation mechanisms within the middleware operating in a network

embedded system is mainly due to two different types of changes that may occur during its operation.

On one hand, changes are likely to occur within the network. For example, the network topology may

change, due to the addition of new nodes or malfunctioning of existing ones. These changes must be

taken into account by the middleware so that the needs of the application are still met. Eventually, the

middleware must be able to allow the application to modify its behavior if necessary, letting

information emerge from the network level.

On the other hand, applications using the middleware may change at run-time their requirements, thus

demanding adaptation of the middleware to cater for the new requirements. For example, the precision

of data that the application wishes to receive can be changed during the application’s lifetime. This in

turn implies that the filtering mechanisms on sensor-generated data should be updated to provide the

application the new required error tolerance. Another scenario for adaptation is the case where the

application demands to obtain a maximum lifetime. This would require a constant, automated process

to be implemented by the middleware that continuously selects which sensors should provide data to

the application, so that the application’s demands are satisfied and the list of sensors providing data to

the application does not gets empty due to lack of power of individual nodes or communication losses.

Feasibility

Hardware constraints, such as the available memory of an embedded node, its remaining power and its

computational power are some examples of resources constraints that must be taken into account by
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the middleware system. Another constraint is the limited bandwidth and the increased packet loss and

delay expected to be experienced in a mobile ad hoc network of embedded nodes. This means that it is

not possible that all tasks can be performed at any instance by every node within the system. Rather,

the middleware should be aware of the constraints on the available resources and distribute and

coordinate the tasks accordingly, in a way to achieve the desired behavior.

Note that the non-functional requirements discussed in this section, refer to a generic middleware

platform, ie. they do not depend on the particular applications using the middleware. On the other

hand, functional requirements of the middleware, expressed as services, tasks or functions the system

is required to perform depend in many circumstances on the particular application using the

middleware and the networking environment where the middleware operates. However, it is important

that this survey includes a listing of the generic functional components and services that may present

in a middleware system for a networked embedded system.

3.2 Taxonomy with respect to functional requirements

In the previous section, we discussed the main non-functional requirements that a middleware

platform should address in order to meet the needs of distributed applications operating within a

networked embedded environment. In this section, we will provide an overview of the main functional

components and services that potentially need to be implemented within the middleware. We will also

provide in the appendix of this document an overview of some state-of-the art implementations of

security and location services targeting networked embedded systems.

In section 2 of this document, we identified three categories of networked embedded systems: mobile,

embedded and sensors systems. The main functional components of each these categories are the

following.

Mobile Systems

Devices in mobile systems may be of a quite large size and have powerful computing capabilities. The

kind of applications and the middleware functionality that will be running on these devices will

therefore vary quite considerably. In this section we want to identify a couple of important ones, which

can be found on many of the middleware we have reviewed.

Sensors Systems

It is worth underlining that no available middleware platform for wireless sensor networks implements

all of the functional components listed in this section, however there is at least one platform

implementing each component. The aim here is to provide a general view of what functions could be

offered by middleware platforms and show how the corresponding functional components are

interconnected.
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Figure 3.1:Functional components of middleware for wireless sensor networks

Figure 3.1 presents the main functional components that may be present within a middleware system

operating within a wireless sensor network. A brief description of the functionality of each component

is given below.

3.2.1 Functional Components for Mobile Systems

Event Notification: the ability to deliver messages to one or more recipients. Event notification

systems are often also called publish-subscribe systems. In nomadic networks the event notification

functionality is usually taken care of by the core fixed infrastructure, while the mobile devices simply

receive the events. In ad hoc network, the solutions need to be more decentralized as the nodes have

roughly the same kind of roles. Each node has an event notification component. Typically

publish/subscribe systems contain information providers and information consumers. The information

providers publish events to the information consumers and information consumers subscribe to

particular categories of event. The Publish-subscribe (P/S) middleware ensures the delivery of

published events to all interested subscribers.

Mobility and location awareness: the ability to roam or move from location to location is an essential

component for these kind of systems. In terms of middleware, the mobility is the ability to recognize a

new environment and adapt to it.

Addressing: this component recognizes the different devices around in order to be able to

communicate with them.

Service discovery: the ability to identify new services and, possibly protocols. This is an essential

component of the middleware, which also relate to the ability of relocating.

Code Updater: the ability to dynamically change the protocol and the code of the running applications

or of the middleware itself in order to adapt to context.
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3.2.2 Functional Components for Embedded Systems

Real time: often these systems are embedded into larger machines and devices that perform critical

real time operations. It is the task of the middleware to maintain and monitor time and deadlines in

order to maintain these kind of guarantees.

3.2.3 Functional Components for Sensor Systems

Hardware: This component represents the physical devices (CPU, sensors, radio transmitter, etc)

within the host.

MAC: This component is responsible for one-hop broadcast and transmission. It may provide a simple

collision avoidance strategy. We will not detail it further since it is out of the scope of this survey.

Local OS: It represents the local OS functionalities available on the host such as interrupt

management, local task scheduling, basic I/O operations including sensor readings.

Code Updater: It provides mechanisms for replacing the code running on the sensor, ranging from a

single application routine to the entire operating system. It supports both weak (only code is

transferred) and strong (the state and the program counter are transferred too) mobility.

Cryptographic System: This block contains the standard functions for cryptography such as data

encryption, decryption and hashing.

Local Memory Pool: It is a repository for sharing information among different components to save

memory. A typical example is the neighbors' list that is exploited by MAC, multi-hop routing, wake-

up coordination and others.

Sensor Readings Synchronization: Several applications (e.g., seismographic or building health

monitoring) require a precise (in microseconds) synchronization among readings on different sensors.

This component is responsible for accomplishing the level of synchronization needed by the

application.

Wake-up Coordination: Clearly sensors must sleep most of the time to preserve battery and to increase

network lifetime. Conversely, when a transmission takes place, sender and receiver need to be awake

simultaneously. Likewise, it is fundamental to prevent collisions by not having too many nodes

transmitting at the same time. Hence, an appropriate wake-up scheme must be adopted that takes into

account all of these issues.

Cross-layer Communication: Its goal is two-fold: it exposes the hardware status (battery level, sensors

characteristics, etc.) to the application or other components and it allows the application to specify the

desired QoS in terms of sensing rate and accuracy, reliability and network management. It spans both

the local and distributed level.

Multi-hop routing: It provides multi-hop point-to-point and multipoint style of communication. In

particular, in the case of multipoint communications, the set of receivers may be identified by the

specific subject of the message (multicast or subject-based routing), by its content (content-based

routing) or by the receivers' physical location (geocast).

Clustering: Clustering is a fundamental functionality needed in sensor networks (e.g., for data

aggregation and for energy-efficient communication). This component models the ability of

aggregating nodes based on geographic proximity or other criteria (e.g., battery level, sensor types,

etc.). It supports both intra- and inter-cluster communication, for example by providing algorithms for

leader election.
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Distributed Task Scheduler: It is responsible for allocating task on different hosts according to their

specific capabilities and energy status.

High-level components: This set of components exploits the previously mentioned components to

offer high-level functionalities to applications.

• Local data storage: this component controls the access to the local data, providing

abstractions (eg. SQL-like) for data retrieval.

• (Distributed) event notification: it implements a distributed event notification service,

allowing sensors to subscribe to interested events and to publish event notifications. If

present, it may leverage off content-based routing as provide by multi-hop routing

component, otherwise it may employ different strategies.

• (Distributed) query: it exposes a query-based interface to retrieve data on remote hosts.

• Code + state relocation: while code updater provides primitives for replacing running code

on the host, this component takes care of all the issues concerning a distributed

reprogramming of the network such as deployment, global consistency, etc.
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4 Existing middleware for networked embedded systems

This chapter will present a survey of middleware systems for networked embedded systems, as we

have found in the literature at the time of writing of this document. Using the classification of

networked embedded systems that we presented in chapter 2 of this document, we will divide this

chapter in three sections. The first section will overview important work on middleware targeting

mobile systems, the second will focus on embedded systems, while the third on wireless sensor

networks.

4.1 Middleware for Mobile Systems

This section overviews and evaluates some important solutions on mobile systems middleware.

4.1.1 GAIA

By extending the reach of traditional computing systems to encompass the devices and physical space

surrounding the machines, entities, both physical and virtual, may be allowed to seamlessly interact.

Physical spaces become interactive systems, or in other terms, Active Spaces. Such environments are

analogous to traditional computing systems; just as a computer is viewed as one object, composed of

input/output devices, resources and peripherals, so is an Active Space. However, the heterogeneity,

mobility and sheer number of devices makes the system vastly more complex. Applications may have

the choice of a number of input devices, such as location sensing system, mouse, pen, or finger and

output devices, such as an everywhere display, monitor, PDA screen, wall-mounted display, speakers,

or phone.

Gaia brings the functionality of an operating system to physical spaces. Common operating system

functions are supported, such as events, signals, file system, security, processes, process groups, etc.

Gaia extends typical operating system concepts to include context, location awareness, mobile

computing devices and actuators, like door locks and light switches. Gaia is investigating how to build

applications in a generic way that make no assumptions about the current hardware setup of a space -

applications can be built and then deployed in spaces with different configurations, using the available

resources.

Figure 4.1: Gaia architecture
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The key elements of the Gaia middleware are described in the following.

Component Management Core: The Component Management Core (CMC) provides Gaia with the

functionality to manipulate components. This manipulation includes component creation, destruction,

and uploading. The component manager does not impose any specific middleware protocol to provide

support for remote method invocation; instead, it leverages existing middleware platforms. The CMC

consists of three abstractions: (1) Gaia Components, (2) Gaia Nodes, and; (3) Gaia Component

Containers. Gaia’s components constitute the minimum software unit in the system. A Gaia Node is

any device capable of hosting the execution of Gaia Components. However, Gaia Nodes organize

components into containers (Gaia Containers), which group components and export an interface to

manipulate the components that belong to such a group. Gaia nodes export an interface to manipulate

component containers (i.e. create, browse, and delete).

Event Manager: Components in a loosely coupled system like an Active Space are typically designed

to operate by generating and responding to asynchronous events. The event manager provides a model

for decoupled communication between different entities in an Active Space. It allows creating channel

categories, browsing these categories and their associated channels and creating and deleting channels

associated with particular categories. All Gaia components use the event manager to learn about

changes in the state of the space and react accordingly. The Presence Service, for example, listens to

different channels to learn about new entities (e.g., software services and people entering the space),

filters the information, and publishes events to inform the rest of the system about new entities

discovered and entities that are no longer available.

Context Service: Making computers obtain, understand and use context while interacting with humans

is a difficult task. The main difficulty is that there is no common, reusable model that can be used to

handle context. Context service looks on a clausal model for context that is both simple and

expressive. The model defines various properties of context as well as operations that can be

performed on context. Based on this model of context, an infrastructure to enable context-awareness in

ubiquitous computing environments has been developed. The infrastructure allows easy development

and deployment of context sensors and context-aware applications.

Component Repository: Gaia Nodes (i.e., devices with a service exporting their functionality to Gaia)

host the execution of software components (Gaia Components). However, it is not feasible to assume

that every Gaia Node will have a copy of all possible software components that can be executed in the

active space. Gaia implements a component repository service responsible for storing all software

components known to the active space. This repository stores components as well as information

related to the components (e.g., name, hardware platform, and required OS) and exports functionality

to browse, store, and upload components to Gaia nodes.

Space Repository: The Space Repository is a centralized database containing information about all

active devices and services in an Active Space. It keeps this information up-to-date by listening on the

Presence Channels, where events about new entities, as well as entities that are no longer active, are

sent. All entities in the system have an XML description, which includes properties such as entity type,

name, location, etc. The Space Repository can be queried for entities based on these properties. For

example, an application may require two large displays. These components can be found by querying

the Space Repository for two displays that satisfy a particular dimension constraint. Note that in

different spaces, different displays may result from such a query, depending on what resources are

available.

Gaia is deployed in a prototype room containing state-of-the-art equipment, including programmable

surround sound audio system, five plasma panels, HDTV, webcams, Tablet PCs, X10 devices, IR

beacons, bluetooth, wireless ethernet, fingerprint devices, Iris scanners, smart phones, RF badges, and

Ubisense location technology. The goal of Gaia is to design and implement a middleware operating

system that manages the resources contained in an Active Space. An operating system for such a space

must be able to locate the most appropriate device, detect when new devices are spontaneously added

to the system, and adapt content when data formats are not compatible with output devices. Traditional
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operating systems manage the tasks common to all applications; the same management is necessary

for physical spaces.

Evaluation

Gaia aims to provide middleware support for active space environments such as smart rooms and

living environments. It essentially provides a distributed operating system where all input and output

and processing units within a room are considered as a single computer.

Gaia supports the following functionality: Event Notification, Mobility and Location Awareness,

Addressing, Service Discovery and Code Updater. However, the main drawback of the implementation

of such functional components is that Gaia depends on centralized services and components. For

example, Event Notification is based on centralized event brokers suitable only for Local Area

Networks. Addressing and Service Discovery is realized through the use of Gaia’s Space Repository

that is a not distributed among nodes, but it is a centralized database containing information about all

active devices and services in an Active Space. Support for Mobility and Location awareness in Gaia

is limited to infrastructure based wireless environment. Code Updater functionality is offered by

means of the Component Repository, which is used to store and upload new middleware components

to Gaia nodes. However, it is not clear if and how Gaia includes mechanisms that can perform in an

automated way (i.e. without the need of human intervention) the component update within the nodes.

Non functional requirements addressed by this middleware is mainly openness. Openness is provided

in Gaia by means of the Component Repository, where middleware components are stored. This

repository provides the functionality to dynamically, when necessary, upload new components to the

corresponding Gaia nodes. Interoperability between heterogeneous platforms is not focused in Gaia.

4.1.2 ExORB

 The developers of ExORB [Roman04] envisage a middleware infrastructure that enables carriers and

developers of distributed applications for mobile phones to be able to configure the middleware,

perform software upgrades on it and correct its behaviour at run-time. They use a new technique,

called externalization, to explicitly externalize the middleware platform’s state, logic and internal

component structure. The end-result is that developers and carriers have the ability to control all

middleware services by accessing, inspecting and modifying their state, logic and structure at run-time

while maintaining an error-free user experience. As a result of the constraints in the mobile phone

domain, e.g., limited resources and intermittent reliability, middleware services targeting them must:

1) be configurable statically and dynamically, 2) be dynamically updateable to correct errors, and; 3)

provide support for run-time upgrades to add new functionality. Contemporary reflective middleware

systems offer support for configurability and allow replacement of certain components to adapt to

changes in their environments. However, these middleware services assume a basic skeleton in which

changes are largely pre-defined. Ex-ORB attempts to provide a design in which it is possible to modify

literally every aspect of the system (including the basic skeleton) and perform fine-grained

customizations.

ExORB is realized using a construction technique called Dynamically Programmable and

Reconfigurable Software (DPRS). DPRS is referred to as:

• Programmable because just like Field Programmable Gate Arrays (FPGAs), which facilitate

programming of the behaviour of hardware, it allows programming of the behaviour of

software by defining the structure and logic of the software.

• Reconfigurable as it makes it possible for one to access and change structure, logic and

state of middleware services.

The changes in the middleware services occur at run-time hence the use of the term ‘Dynamically’.

DPRS uses a set of three abstractions to construct dynamically reconfigurable middleware services:
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Micro-building Block (MBB): Is the smallest addressable functional unit in the system. It receives a

set of input parameters, performs an action that may or may not have an effect on its state, and

generates a set of output parameters. A good example is the ‘registerObject’ which receives two

parameters as input i.e. a name and an object reference, updates a list (effectively its state) and outputs

the number of registered objects in its list. This state attribute is stored as a name and value tuple

alongside others in a system provided storage area. Hence the need to state transfer protocols is

eliminated to replace MBBs. Instead, replacement of an MBB involves registration of a new instance

of the MBB and provision of a pointer to the existing Figure 4.2 presents an MBB’s structure.

Figure 4.2: Micro Building Block Structure

It is important to note that MMBs do not contain references to other MMBs. This ‘non-referencing’

property makes the process of replacing a MBB.

Action: This specifies the order in which MBBs execute. They could also be seen as defining the logic

of the system. There are two types: interpreted action and compiled action. An interpreted action is

defined by DPRS as a deterministic directed graph where nodes are MMBs which denote execution

states, and edges define the order of transition. Figure 4.3 presents an example.
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Figure 4.3: Interpreted action example

Execution of an interpreted action is equivalent to traversing the above graph. In this example, MMB1

is called the start node from which invocation starts. Execution then proceeds to MMB2 and

depending on value of X, either MBB3 or MBB4 is executed. Finally, MMB5 is executed.

A compiled action is a fragment of code which specifies the order in which MMBs should be

executed. A DPRS library is used by the compiled actions to invoke MBBs. The library’s role is to

receive a MBB name and a set of input tuples and invoke the MBB with the received input values. The

figure below illustrates an example of a compiled action.

Figure 4.4: Compiled action example

Domain: This is an abstraction which aggregates collections of related MBBs. Its main role is

therefore to provide a storage area to store the structure of the list of MBBs (called domain), the logic

of the domain) list of actions), and the state of the domain (state attributes of MBBs and execution

state values). They can be sued to manipulate collections of MMBs as a single unit e.g., move,

suspend, resume.

Ex-ORB is a multi-protocol Object Request Broker (ORB) communication middleware service that

provides client and server functionality independent of wire protocols. The end result is that is that it is

possible to invoke server methods over a range of protocols including IIOP and XML-RPC. The same

applies to client requests. Although Ex-ORB’s implementation only supports the above two protocols,

it is possible to use other protocols by developing and deploying additional MBBs at run-time. Ex-

ORB’s architecture is externalized and this makes it possible to access, inspect and modify it

Action Test

{ outputParams = InvokeMBB(MBB1, inputParams);

outputParams = InvokeMBB(MBB2, inputParams);

char X = outputParams.get(“X”);

if (X ==’a’)

outputParams = InvokeMBB(MBB3, outputParams);

if (X ==’b’)

outputParams = InvokeMBB(MBB4, outputParams);

outputParams = InvokeMBB(MBB5, outputParams);

}
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dynamically. It has been built using a Java implementation of DPRS. It has 28 MMBs classified into

11 domains as illustrated in the figure below.

Figure 4.5: ExORB Structure

The functions of the 11 domains are detailed briefly below.

• CDR Parameter Management Domain: marshals and demarshals parameters using

CORBA’s default presentation format – the Common Data Representation Format (CDR).

It has 2 MBBs as shown in the diagram to provide the marshalling and demarshalling

functionality.

• XML-RPC Parameter Management Domain: marshals and demarshals parameters that are

encoded according to the XML-RPC protocol.

• IIOP Protocol Processing Domain: a collection of MMBs that provide functionality to

encode and decode messages that conform to the IIOP protocol.

• XML-RPC Protocol Processing Domain: equivalent to the IIOP Processing Domain but

provides functionality to process requests and replies that conform to the XML-RPC

protocol.

• Network Data Management Domain: processes incoming and outgoing network traffic.

• Object Invocation Domain: Uses Java language reflection capabilities to automate server

method invocation. Hence developers only register their server objects and the system

obtains all the information it needs instead of developers having to build the skeletons for

these objects.
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• TCP Incoming Connection Management Domain: processes incoming TCP network

connections.

• TCP Outgoing Connection Management Domain: processes TCP connection establishment

with remote peers.

• Object Registration Domain: Manages all server objects using three MBBs; Register

Object, Remove Object, and Get Object.

• Protocol Detection Domain: identifies the communication protocol that incoming requests

conform to (either IIOP or XML-RPC). This supports ExORB’s multi protocol behaviour.

• URI Object Reference Management Domain: parses a remote object URI reference and

extracts all required information to send the requests to the remote object.

The total size of ExORB’s current Java implementation is 70 KB. It exports four actions: send request

used on the client side, and receive request, init and register object which are for the server side. Each

MBB explicitly specifies its state dependencies whose definition is provided in terms of a name and

value. These tuples are stored in a storage area in the MBB domain. The state of the software is given

by the union of all MBB state attributes. Hence the state of ExORB at any instance is the sum of all

state attributes that are defined by all 28 MBBs.

Current work is on reduction of the performance overhead that the use of ExORB introduces. Future

work will involve incorporation of functionality to guard against structural and logical semantic errors

as inevitably, architectural externalization raises system integrity issues.

Evaluation

The ExORB project’s main aim is to contribute towards construction of configurable, updateable and

upgradeable middleware services. The externalization technique the middleware uses has potential

benefits to software developers and domain experts since it offers support to phone evolution.

Essentially, it makes it possible for multiple configurations, updates and upgrades to be done at

runtime.

The following functional components are supported by ExORB: Mobility and Location Awareness and

Code Updater. Targeting the mobile phone industry, which involves changes of location, the

middleware explicitly address mobility. Code Updater functionality is provided by allowing updating

and replacement of the Micro Building Blocks (MBBs) operating within the middleware. However,

there is no support for a mechanism for automatically performing the updates and replacement of

MBBs, but human intervention is required for this purpose.

ExORB addresses the non-functional requirements of heterogeneity, openness and adaptability.

ExORB provides partial support for heterogeneity through its multi-protocol (IIOP and XML-RPC)

support paradigm. The requirement of openness is addressed by allowing run-time updates and

replacement of the small functional units (Micro Building Blocks) that comprise the middleware.

Although it does not incorporate dynamic response by the middleware to changing application needs

without developer-initiated actions, ExORB’s provision of the ability to change software configuration

at run-time implies it has great potential to offer support for adaptability.

4.1.3 WSAMI

This work is part of the IST Ozone project [OZONE], which investigates the design and

implementation of a generic framework enabling consumer-oriented ambient intelligence applications.

The main goal of the work is providing middleware support for development of ambient intelligence

systems based on web services. Enabling ambient intelligent means that consumers will be provided

with universal and immediate access to available content and services regardless of location and

device capability. Focusing on software systems development aspect, this means that actual
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implementation of any ambient intelligence application requested by user can only be resolved at run

time according to users’ specific context. The system achieves this by having a base declarative

language and associated core middleware, which supports the abstract specification of ambient

intelligence applications, together with their dynamic composition according to the environment.

The solution is based on web services architecture whose pervasiveness enables both service

availability in most environments and specification of applications supporting automated retrieval and

composition. The work focuses on enabling seamless access to content and services any time and any

where. The key feature relates to enabling the dynamic composition, possibly distributed, of requested

service according to the mobile users’ situation. The web service based solution enables the solution to

be pervasive enough and the consistent specification of composable services. Currently, the main

constituents of web services architecture are:

1. WSDL (web services description language) that is a declarative language for specifying the

interface of web services.

2. SOAP (simple object access protocol) that defines a light weight mechanism for

information exchange.

3. UDDI (universal description, discovery and integration) for registering web services and

locating web services.

The middleware solution builds upon the web services architecture by having WSAMI (Web Services

for AMbient Intelligence). The specific requirements imposed by ambient intelligence systems on the

web services architecture relate to supporting the dynamic selection and composition of web services.

This must further be realised in a way that enforces quality of service, while accounting for mobile and

resource constraints of wireless devices. For example, significant part of the demonstrator scenario of

the middleware relates to accessing public services from a wireless device such as scheduling and

booking trips, restaurants, hotel, theatre, city guides and multi modal transport services. These services

may be implemented via a composition of more primitive web services which may be accessed via the

internet. However they may be also accessed via WLAN using adequate service discovery in the local

area. Some of the services may be hosted by mobile nodes as well. The above example of composition

focuses on realising application related services out of existing web services. This is straightforward to

achieve in a stationary environment with internet access using the available web services technology.

However, it should be noted that web serves can be hosted in stationary and mobile nodes and the

correct composition needs to be achieved so as to offer quality of service to the mobile users according

to his/her situation [Issarny].

Effective situation sensitive composition of web services is realized in the WSAMI environment by

supporting: 1) a composition process that is distributed over the nodes hosting the component services,

2) connectors customization to enforce quality of service, and 3) exploitation of today’s WLAN for

both local and wide area service discovery.

In the following, we will describe key characteristics of the WSAMI environment.

Distributed composition of services: Assisting the composition of web services in stationary

environment has been an active research area over the last years. The proposed solutions relates to

offering an XML language for describing the overall composition process. The resulting description

primarily serves as a composition design, since the implementation of the associated composite service

relies on the development using specific platforms. Dynamic integration of web services is further

supported by using UDDI that defines a middleware related trading service for retrieving service

instances that match a given service specification (eg. WSDL specification). The above provides

adequate solutions towards developing composite services whose component services may possibly be

retrieved dynamically. However, the dynamic integration of services shall be embedded within the

implementation of individual services and is left under the responsibility of the service developer.

Dynamic selection and integration of web services needs to be automated in the ambient intelligence

context. It must be supported by the middleware as opposed to handled by the application developer.

The WSAMI language enriches the specification of web services with the abstract specification of
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services with which interaction is required The WSAMI middleware further supports retrieval of

matching service instances in the environment.

Enforcing quality of service via connector customization: The solution to the systematic

customization of connectors lies in the WSAMI support for: 1) abstractly specifying non-functional

properties to be enforced over connectors; and 2) customisers that define middleware related web

services to be integrated for enforcing a given non functional property.

Combining local and wide area service composition: The WSAMI core middleware allows for

service composition both in the local and wide area over WLAN, via its naming and discovery service,

which is the only middleware related service that is introduced in addition to the SOAP based core

broker of the web service architecture.

The WSAMI Language: The WSAMI language enables the specification of web services so that they

can be dynamically composed according to the environment in which services are requested, while

enforcing quality of service. The WSAMI specification of a service relates to the service’s abstract

interface with possible extension of associated non functional properties. The description of web

services is enriched by WSAMI with the specification of required services and non functional

properties to allow for the situation sensitive composition of services as supported by WSAMI

middleware.

WSAMI Middleware: The core middleware associated with web services lies in the provision of a

SOAP-based core broker, including SOAP containers that are able to deploy web services and to

manage RPCs from SOAP clients and dispatch them to services. In the WSAMI middleware, web

services may be deployed on resource constrained wireless terminals (e.g., PDA-like devices).

Deployment of web services on mobile platforms is not considered to be a major issue given the base

run-time platforms being developed for such terminals, such as the Java2 Micro edition. This section

focuses on the design of the WSAMI naming and discovery (ND) middleware service, which supports

situation sensitive composition of services, given the services’ WSAMI specification. The ad-hoc

mode based and infrastructure mode based operation of WLAN is considered to support enhanced

connectivity and hence enhanced service availability. The naming & discovery support for

dynamically locating requested services lies in: 1) the management of repositories of services’ abstract

interfaces and instances, 2) locating instances of services that are reachable both in the local and wide

area. The prototype implementation of the middleware is a Java based prototype of the WSAMI core

middleware. The IEEE 802.11b is used as the underlying WLAN. The demonstrator application has

used this middleware. The services are implemented as web services on top of WSAMI which

supports for the dynamic deployment and dynamic discovery and composition of web services in

mobile environments. WSAMI relieves the developers from dealing with mobility management. The

WSAMI core middleware prototype subdivides into: 1) the WSAMI SOAP based core broker

including the CSOAP SOAP container for wireless resource constrained devices, 2) the naming &

discovery service including support for connector customization. Figure 4.6 depicts the main

components of the WSAMI middleware prototype implementation on top of which web services

executes. The grey components denote the available components that were reused and the components

developed are bold faced. The components developed as part of the WSAMI core broker belong to any

web service platform; an implementation is provided so as to allow for execution on resource

constrained devices.
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Figure 4.6: WSAMI core middleware prototype

The WSAMI core broker contains an XML parser, a SOAP container to deploy web services and

manage RPC, the WSDL2WSAMI tool that generates the WSAMI documents that describe WSAMI

enabled web services and InstallWSAMI tool to install and configure services on the WSAMI

middleware. From the developer’s point of view, the development of WSAMI-enabled web services

adds minimal overhead compared to the base web services. The developer has to specify services and

non-functional properties required by the service being developed using the WSAMI language.

Evaluation

By defining a minimal middleware infrastructure for the actual dynamic composition of services, ie.

naming and discovery service in addition to SOAP, the middleware allows for wide deployment, and

also incurs minimal overhead in terms of resource consumption. The middleware solution is similar to

a service discovery platform, but most service discovery platforms operate in local area networks,

while here composition of services may retrieved both in local and wide area. As it’s based on web

services, the availability of the service is promoted. Compared to the state of the art web services

architecture, this work differs by addressing the dynamic discovery and composition of web services

in the mobile context. The solution also addresses infrastructure-based and ad-hoc mode based

operation.

The embedded devices that can be supported by this middleware are limited to 32-bit

microprocessor/controller that has more than 2MB of total memory for the storage of VM and

libraries. The middleware is not suitable for real-time applications. Since its performance is

comparable to web services, it suffers from high processing overhead inherent in XML-based

solutions in embedded devices.

WSAMI supports the following functionality: Mobility and Location Awareness and Service

Discovery. Mobility of devices is supported within an infrastructure-based wireless network and

wireless ad-hoc networks. Service Discovery is realized with the implementation of the Naming and

Discovery middleware service.

Non functional requirements addressed by this middleware are heterogeneity and security. Since the

middleware is based the on web services architecture, it addresses heterogeneity and especially,

interoperability between different platforms and services (that are based on CORBA, DCOM, Java
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RMI, etc.). This means that consumers will be provided with universal access to the available content

and services. The ambient intelligence requirement is addressed by enabling anytime, anywhere access

to applications from any terminal by binding related service instances at run-time. The WSAMI

language supports dynamically retrieving instances of services matching a requested application.

4.1.4 CORTEX

The CORTEX (CO-operating Real-time senTient objects: architecture and EXperimental evaluation)

project [CORTEX] addresses the emergence of a new class of applications that operate independently

of human control. Key characteristics of these applications include sentience, autonomy, large scale,

time and safety criticality, geographical dispersion, mobility and evolution. The key objective of

CORTEX is to explore the fundamental theoretical and engineering issues necessary to support the use

of sentient objects to construct large-scale proactive applications and thereby validate the use of

sentient objects as a viable approach to the construction of such applications [Veríssimo 02]. In the

CORTEX approach, applications are composed of collections of ‘sentient objects’ - mobile intelligent

software components (not mobile code) that accept input from a variety of different sensors allowing

them to sense the environment in which they operate before deciding how to react and affect the

environmental objects. Sentient objects are able to discover and interact with each other and with the

physical world in ways that demand predictable and sometimes guaranteed quality of service (QoS),

encompassing both timeliness and reliability guarantees. Achieving predictability is made difficult by

the characteristics of the dynamic environment in which these objects operate, including an unstable

and mobile object population, unpredictable network load, varying connectivity, and the presence of

failed system components. Thus, the construction of applications from sentient objects takes account

of the fundamental trade-off between the existence of a dynamic environment and the need for

predictable operation. To date, no comprehensive technology appropriate to the design and

implementation of such applications exists. The objective of CORTEX is to explore the fundamental

theoretical and engineering issues that must be addressed to deliver such technology.

In order model and design applications based on the sentient objects paradigm, the following aspects

were treated as first class entities, i.e. programming model, interaction model and systems architecture.

Sentient Object Programming Model

In the sentient object programming model [Wu], software entities are categorized into sensors,

actuators, and sentient objects. Sensors are defined as entities that produce software events in reaction

to a stimulus detected by some real-world hardware device. An actuator is defined as an entity that

consumes software events and reacts by attempting to change the state of the real world in some way

via some hardware device. Both of these may be a software abstraction of actual physical devices. A

sentient object is then defined as an entity that can both consume and produce software events, and lies

in some control path between at least one sensor and one actuator.
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Figure 4.7: The sentient object model

Sentient objects are cooperative and communicate with each other and with sensors and actuators via

an anonymous event-based communication paradigm, permitting loose coupling between sentient

objects and sensors and actuators. A sentient object and its internals are illustrated in Figure 4.7. The

novel event-based communication mechanism incorporated in the model is specifically designed for

mobile ad-hoc wireless environments, such as those requiring spontaneous device interactions and

networking, found in embedded systems (e.g., mobile computing, sensor networking, cooperative

vehicles, etc.).

Interaction Model

The interaction model between sentient objects is based on an event-based or a publish-subscribe

communication model. Typically, mobile sentient objects meet each other in a spontaneous and ad-hoc

manner; therefore the event-based communication model needs to be operational over mobile ad-hoc

networks; breaking the traditional assumptions of relying on fixed infrastructure based services. The

STEAM [Meier02] definitions describe the design considerations in architecting fully distributed

even- based communication middleware for proximity-based mobile ad-hoc networks. Since sentient

objects perform real time interactions, the underlying event channels are QoS-aware, specifically with

respect to reliability and timeliness. The Timely Computing Base [Casimiro] provides the basic

support to construct QoS-aware distributed event channels.

The CORTEX middleware supports diverse application domains such as cooperating sentient vehicles

[Sivaharan] and smart living environments.

CORTEX Middleware Architecture and Platform

The key research challenges that were addressed in CORTEX’s architecture are: communication

model, routing protocol, context-awareness, end-to-end QoS (Quality-of-Service) and fail-safety.

These challenges are addressed and solutions are provided as different component frameworks (CF)

[Sivaharan]. The middleware platform consists of: Publish-Subscribe CF, Group communication CF

and Context CF. Component frameworks (CF) enforce the functional and non-functional properties of

the system, and keep consistency across adaptations triggered by applications. A particular

configuration of the middleware for mobile ad-hoc networks is shown in Figure 4.8. This

configuration was targeted towards the cooperating sentient vehicles application, where context-aware

autonomous vehicles travel from a given source to destinations and cooperate with other vehicles to

avoid collisions, obey road side traffic lights and give way to pedestrians.
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Figure 4.8: Middleware Platform for MANET

Communication model: A key challenge that needs to be addressed by the cooperating sentient

vehicles application, is the suitable communication model. To address this, a loosely-coupled,

asynchronous, anonymous and a fully decentralized communication model were implemented based

on the Publish-Subscribe communication model. However, most of the state of the art publish-

subscribe or event-based middleware are based on centralized event brokers. The CORTEX

middleware takes the approach of having a publish-subscribe communication model, with all the

aforementioned required properties and was especially designed for MANETs [Sivaharan].

Routing Protocol: Routing in mobile ad-hoc networks is a challenging issue because of frequent

topological changes in networks. Publishers and subscribers move frequently, posing a challenge for

routing of events in wireless ad-hoc networks. Multicast routing based on proactive and reactive ad-

hoc routing, using shared state kept in the form of routes and adjacent information, is useful in

environments with low node mobility. However, in scenarios with high node mobility such protocols

are unsuitable as shared state and topology information can quickly become outdated. For this reason,

as part of the Group communication CF, a Probabilistic Multicast Protocol for Wireless Ad Hoc

Networks was implemented. The protocol specifically targets proximity based ad hoc environments

with high node mobility and a frequently changing topology of group members. Generally different

overlays are required to meet application specific requirements.

Context-awareness: Another challenge is context-awareness in highly dynamic physical environments.

The fundamental challenge is that it is not possible to construct an exact ‘image’ (perception) of the

surrounding environment. Therefore, there is a risk of wrong decisions being made based on

inaccurate information. The context awareness is modeled using sentient objects. The sentient objects

are objects that consume events from variety of different sources including sensors and event channels,

fuse them to derive higher level contexts, reason about using an inference engine, and produce output

events whereby they actuate on the environment or interact with other objects. The inference engine in

the middleware is powered by a C Language Integrated Production System (CLIPS) inference engine).

The Context CF provides the facility for supporting a range of inference engines and sensor fusion

algorithms (that may be selected at runtime).

End-to-End QoS Management and fail safety: In cooperating sentient vehicle applications, timely

event delivery and awareness of the QoS of the event channels used for inter-vehicle communication

are crucial for fail-safety. Dealing with highly dynamic interactions and continuously changing

environments, at the same time, with needs of predictable operations is a major challenge. The key

issue in operating in uncertain environments is that timing bounds for distributed actions may be

violated because of timing failures. Therefore when executing in uncertain environments, distributed

operations with timeliness requirements must be able to deal with timing failures. CORTEX

middleware assumes in the architecture, that it can model the uncertainty of wireless communication
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using a dependable timing failure detection service for distributed operations. In the middleware, this

is provided by University of Lisboa’s Timely Computing Base (TCB) [Casimiro]. The TCB provides

the facility to monitor timeliness of event delivery on distributed event channels, thus providing

estimations and awareness of timing failure probability for a given required coverage

The middleware platform shown in Figure 4.8 was implemented for the windows CE based PDA using

C/C++. The OpenCOM [Blair et al, 01] reflective component technology underpins the

implementations.

Evaluation

The CORTEX project proposes a novel sentient object model to address the emergence of a new class

of applications that operate independently of human control. It clearly identifies the key components

required for mobile networked embedded systems applications, such as the communication model, the

routing protocol, context awareness etc.

The support for mobility and location awareness is addressed, where infrastructure-based and ad-hoc

based wireless environments are considered. Applicability of the middleware includes application

domains, such as smart spaces and embedded devices in mobile wireless ad-hoc networks.

The support for heterogeneity is limited in the middleware. The issue of adaptability in the

environment is addressed by providing highly configurable (during deployment and at run-time)

middleware, which is adaptable to environmental dynamics.

4.1.5 AURA

Today, a major source of user distraction arises from the need for users to manage their computing

resources in each new environment, and from the fact that the resources in a particular environment

may change dynamically and frequently. In the Project Aura [Garlan02, Sousa02] at Carnegie Mellon

University, researchers have proposed a new solution to this problem. This solution is based on the

concept of the personal Aura. The intuition behind a personal Aura is that it acts as a proxy for the

mobile user it represents: when a user enters a new environment, their Aura marshals the appropriate

resources to support the user's task. Furthermore, an Aura captures constraints that the physical context

around the user imposes on tasks.

To enable the action of such personal Aura, an architectural framework is needed that clarifies which

new features and interfaces are required at both the system and the application-level. The framework

must have also defined placeholders for capturing the nature of the user's tasks, personal preferences,

and intentions. This knowledge is the key to configure and monitor the environment, thus shielding the

user from the heterogeneity of computing environments as well as from the variability of resources.

Figure 4.9 shows a bird's-eye view of the proposed architectural framework. There are four component

types: first, the Task Manager, called Prism, embodies the concept of personal Aura. Second, the

Context Observer provides information on the physical context and reports relevant events in the

physical context back to Prism and the Environment Manager. Third, the Environment Manager

embodies the gateway to the environment; and fourth, Suppliers the abstract services that tasks are

composed of: text editing, video playing, etc.
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Figure 4.9: Aura’s architecture

The environments are not defined by the physical boundaries of boxes or by network connectivity;

they are only of administrative nature. For simplicity, the developers of the framework consider that

each environment has one running instance of each of the following types: Environment Manager,

Context Observer and Task Manager. Naturally, components of these types cooperate with the

corresponding components in other environments. One environment has several service Suppliers: the

more it has, the richer the environment is considered.

The Task Manager has to handle the changes of the environment and the context. It must minimize the

user distractions in four fields:

• user migration between two environments: if a user moves into a new environment, the

Task Manager has to coordinate the migration all the data the user task uses and negotiate

the task support with the new Environment Manager.

• changes in environments: if quality of service (QoS) information provided by components

becomes incompatible with the requirements of the current task, Prism has to query the

Environment Manager to find a new configuration to support the task. The same operation

has to be done if a monitored component dies.

• changes in tasks: if Prism notices that the user interrupts his current task or switches to a

new task, the Task Manager coordinates saving the state of the interrupted task and

instantiates the intended new task. To find out the user's intentions Prism monitors explicit

indications from the user and receives event announcements from the Context Observer.

• changes in contexts: when constraints on the context included in the task description are not

met, Prism restricts some operations. For example, when a user works with sensitive data

and a second person whom is not allowed to see the information enters the room, then the

display will be automatically hidden by the Task Manager.

The key idea behind Prism is the platform-independent description of user tasks. While earlier

research in this area treated task as a cohesive collection of applications, Aura is describing task as a

coalition of abstract services, such as ''edit text'' and ''play video''. This way, tasks can be successfully

instantiated in different environments using different supporting applications.

Context Observers provide information on the physical context and report relevant events in the

physical context back to Prism and the Environment Manager. There can be different degrees of

complexity in each environment, depending on the number and capabilities of the sensors located in

the environment.

Aura introduces a Contextual Information Service (CIS) [Judd03] that provides applications with

contextual information through a virtual database. The information is stored or collected on demand by

a distributed infrastructure of contextual information providers. The applications issue queries using an

SQL-like query interface, the Contextual Service Interface (CSInt). These queries are decomposed by
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the Query Synthesizer to one or more lower-level queries, which are then forwarded to individual

information providers. Results are synthesized and returned to the client application (see Figure 4.10).

Figure 4.10: CIS architecture

The Environment Manager is the gateway to the environment: it is aware of which components are

available to supply which services, and where they can be employed. It also encapsulates the

mechanism for distributed file access. Every Supplier installed in an environment is registered with the

local Environment Manager, so when a new task is initiating and needs an abstract service, the

discovery mechanisms only have to look at this registry.

Suppliers provide the abstract services that tasks are composed of. Two suppliers for the same type of

service can be different depending how complex they are. For instance a supplier for text editing can

be more powerful than another, if the former has a built-in spell checking function. For task migration

purposes, service suppliers have to possess a function to extract and map service status information to

and from the Task Manager and also use a universal representation of service status. For the latter one

a mark-up representation is used which contains a vocabulary of tags and the corresponding

interpretation. Each service type is characterized by a distinct vocabulary of tags corresponding to the

information relevant for the service, although there are commonalities across service types.

All the component types in Aura's architecture have standard interfaces, or ports (represented by

triangles in 4.9). These ports only support local method calls. When Prism migrates a task from one

environment to another, the deployment of the suppliers across devices may be very different. To

enable dynamic reconfiguration in a transparent way to the involved components and to hide the

variation of low-level interaction mechanisms from one environment to the next, Aura uses a feature

called connector. Connectors are autonomous pieces of code assuring the interconnection between a

local and a remote port. There are four types of connectors in the Aura architectural framework: one

type between Prism and an arbitrary supplier, one type between Prism and the Environment Manager,

and two other types connecting the Context Observer to Prism and to the Environment Manager. Each

of these connector types is defined by an interaction protocol appropriate to the component type it

connects.

An experimental system has been implemented based on the architecture presented above.

Evaluation

The following functional components are supported by Aura: Event Notification, Mobility and

Location Awareness and Service Discovery. As we described earlier, events are notified to the

middleware by the deployed within the system Content Observer components. The functionality of

mobility and location awareness is provided by Aura’s Task Manager components, able to adapt tasks

based on changes of the environment and the current context. Finally, services can be dynamically

discovered by querying the Environment Manager components, holding information about the services

that can be supplied to a particular task.

Non functional requirements addressed by this middleware are the requirements of adaptability,

security and feasibility. Aura’s adaptive behavior relies on the fact that it can migrate tasks when users
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enter a new environment, find new configurations for supporting a task when the required QoS is not

received by a particular task, and save the state an interrupted task in order to instantiate a new task.

However, the middleware is limited to provide adaptation only at the task-level, ie. at the service-level.

No support is provided for adaptation at the network-level, for example there are no mechanisms for

distributed management of network resources according to the current network status. The requirement

of security is also addressed with use of a SPKI/SDSI (Simple Public Key Infrastructure / Simple

Distributed Security Infrastructure) mechanism for access control of users’ location information.

Aura addresses the non-functional requirement of feasibility by providing a mechanism for ensuring

that when constraints on the context (such constraints are included in the task description) are violated,

then the middleware restricts some of its operations in order to stop the occurrence of the violation.

However, it is not clear if the framework supports mechanisms for ensuring that generic real-time

constraints, such as the available computational, memory and network resources can be included in the

task description, so that the mechanism implemented in Aura can be used to evaluate these types of

constraints.
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4.1.6 Oxygen

MIT’s Project Oxygen [Oxygen] enables pervasive, human-centred computing through a combination

of specific user and system technologies. It directly addresses human needs using speech and vision

technologies that enable the user to communicate with Oxygen as if the user were interacting with

another person. Automation, individualized knowledge access, and collaboration technologies help

users to live in a comfortable world, where they can do lot of things easier or at all.

The devices, networks and applications used by Oxygen (Figure 4.11) extend the range of a user by

delivering the technologies to users at home, at work or on the go. The researchers have designed two

types of devices: the so called Enviro21 computational devices (E21s) placed in homes, offices and

cars to sense and affect the users’ immediate environment, and the Handy21 handheld devices (H21s)

to provide communication and computing support to the users independently of their location. Both

mobile and stationary devices are universal communication and computation appliances. They are also

anonymous: they do not store configurations that are customized to any particular user. The primary

difference between them lies in the amount of energy they supply. The researchers also invented

special software (O2s) running on E21 and H21 devices which are able to adapt to changes in the

environment or in user requirements. To locate devices, access resources, people or services dynamic,

self-configuring networks, the N21s networks were designed.

Figure 4.11: Overview of Oxygen

Collections of the E21 embedded devices create intelligent spaces inside offices, buildings, homes,

and vehicles (see Figure 4.11). E21s provide large amounts of embedded computation, as well as

interfaces to camera and microphone arrays, large area displays, and other devices. Users

communicate naturally in the spaces created by the E21s, using speech and vision, without being

aware of any particular point of interaction.

H21 handheld devices provide mobile access points for users both within and without the intelligent

spaces controlled by E21s. H21s accept speech and visual input, and they can reconfigure themselves

to support multiple communication protocols or to perform a wide variety of useful functions (e.g., to

serve as cellular phones, beepers, radios, televisions, geographical positioning systems, cameras, or

personal digital assistants). H21s can conserve power by offloading communication and computation

onto nearby E21s.
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N21 networks connect dynamically changing configurations of self-identifying mobile and stationary

devices. They integrate different wireless, terrestrial, and satellite networks into one global seamless

network. Through algorithms, protocols, and middleware, N21 networks realize four purposes.

First, N21s automatically configure collaborative regions, in which reside dynamically self-organizing

collections of computers that share some degree of trust. In addition, N21s create topologies and adapt

them to mobility and change.

Second, the networks used by Oxygen provide automatic resource and location discovery enabling the

applications to use intentional names and location discovery through proximity to named physical

objects (e.g., transmitting radio frequency beacons). With intentional names not only statically named

resources can be found, but entities too that are characterized by their feature or functionality. The

researchers of Oxygen describe some examples. For instance, using this solution, a full soda machine

or a surveillance camera that have recently detected suspicious activity can easily be found.

Third, N21 networks provide secure, authenticated and private access to networked resources. The

base of the security is the collaborative region, in which the devices are instructed by their owners to

trust each other to a specified degree. Rules are defined, which are specifying what is allowed and

what is forbidden. For instance, in the collaborative region of a meeting, guests are not allowed to use

the local printer. Resource and location discovery systems address privacy issues by giving users the

control over how much to reveal.

Fourth, N21s adapt to changing network conditions, including congestion, transmission errors, latency

variations, and heterogeneous traffic, by balancing bandwidth, latency, energy consumption, and

application requirements. They allow devices to use multiple communication protocols, as well

vertical handoffs among these different protocols. N21s provide interfaces to monitoring and control

mechanisms, which enable applications to use their own settings by a connection and vary them upon

the current situation.

N21 networks use two types of routing protocols: intra-space and wide-area. Intra-space routing

protocols perform resolution and forwarding based on queries that express the characteristics of the

desired data or resources in a collaborative region. Wide-area routing uses a scalable resolver

architecture; techniques for soft state and caching provide scalability and fault tolerance. There are

also two types of name resolution solutions: early and late binding between names and addresses (at

delivery time). The preceding supports high bandwidth streams and anycast, the later one mobility and

multicast.

Oxygen integrates many existing protocols and solutions. For routing, it uses a routing protocol called

Grid. It was designed for ad-hoc mobile networks, is self-configuring, requires none fixed

infrastructure, is robust in the face of node failures and intrinsically supports mobile hosts. For the

maintenance of an energy-efficient, ad hoc wireless network's topology Oxygen has chosen the Span

protocol. Span nodes save power by turning off their radio receivers most of the time. A Resilient

Overlay Network (RON) allows distributed Internet applications over the network to detect and recover

from path outages and periods of degraded performance within several seconds. RON nodes monitor

the functioning and quality of the Internet paths among themselves, and route packets according to this

information. Cord, a scalable distributed lookup protocol for peer-to-peer networks is also integrated

in Oxygen. It maps keys to nodes, adapting efficiently as nodes join and leave the system. The

Cooperative File System (CFS) is based on Cord and provides highly available, read-only storage to a

group of cooperating users.

For resource discovery purposes, Oxygen uses the Intentional Naming System (INS). It supports

scalable, dynamic resource discovery and message delivery. As mentioned above, INS describes

application intent in the form of properties and attributes. The resources looked for by a user or service

can be either public or protected by SPKI/SDSI (Simple Public Key Infrastructure / Simple Distributed

Security Infrastructure) access control lists (ACLs). In case of protected resources, software proxies

(K21s) for resources and users present authorization information as an answer for an intentional query
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requested by an INS. The INS then compares this information to resource-supplied ACLs, and if user

has access to the requested resource, INS adds it to the list of available requested resources.

For managing session-specific application state across changes in network attachment points and

during periods of disconnectivity, Oxygen uses a solution, called Migrate. The Self-Certifying File

System (SFS), a secure decentralized global file system, is needed to enable users access their data

from any location.

The O2 software used by Oxygen was built considering the frequent changes of the environment.

There can be many reasons for alterations, for example it can be occasioned by anonymous devices

customizing to users, by explicit user requests, by the needs of applications and their components, by

current operating conditions, by the availability of new software and upgrades or by failures. Oxygen's

software architecture relies on control and planning abstractions that provide mechanisms for change,

on specifications that support putting these mechanisms to use, and on persistent object stores with

transactional semantics to provide operational support for change.

Oxygen software infrastructure consists of Pebbles, the MetaGlue, CORE, Click, SUDS and IOA

[OxygenSoftwareTech]. Pebbles are platform-independent software components, capable of being

assembled dynamically by the GOALS planning mechanism in response to evolving system

requirements. Each Pebble's description contains a mix of formal interface specifications (method

signatures, etc.), informal descriptions (of the sort found in user manuals), and arbitrary other

potentially useful information, including code for test cases and demonstrations.

MetaGlue provides computational glue for large groups of software agents, such as those used in the

Intelligent Room. MetaGlue clearly separates software that acts on behalf of users from software

controlling spaces, provides wide-scale communication and discovery services, enables users to

interact (subject to access control) with software and data from any space, and arbitrates among

applications competing for resources. MetaGlue is implemented in Java, replacing the remote method

invocation (RMI) mechanism with one that allows dynamic reconnection, so that agents can invisibly

resume previously established, but broken connections.

CORE is a communication-oriented routing environment for pervasive computing. It structures an

application as a graph of interconnected components along with a set of event-based rules. CORE

supports application debugging by making all actions reversible, thereby enabling developers to test

new agents or devices until something goes wrong, and then to rewind the system so as to observe the

events leading up to the failure.

Click is an architecture for constructing network routers using software running on standard PC

hardware. Click routers can perform a wide variety of complex tasks efficiently, including network

address translation, encryption, filtering, and traffic prioritization. Conventional routers built from

special-purposed hardware are not easily adaptable to these tasks. Click improves on other software

routers by making it easy to configure and control packet-forwarding paths.

SUDS (Software Upgrades in Distributed Systems) is a mechanism for automatically upgrading code

for objects in a distributed object-oriented database (OODB) to correct software errors, improve

performance, or support new features without disrupting the service. Upgrades run just-in-time as

transactions serialized with respect to all other (application and upgrade) transactions. SUDS is

implemented using Thor, a large-scale distributed OODB that provides reliable and highly available

persistent storage.

IOA is a language and set of tools for developing reliable distributed systems. The language enables

system designers to express designs at different levels of abstraction, starting with a high-level

specification of required global behaviour and ending with a low-level version that can be translated

easily into code. IOA tools allow designers to simulate and reason about properties of designs at all

levels of abstraction and about relationships between different levels. A code-generation tool,

currently under development, will connect verified low-level designs to distributed code, thereby

avoiding errors that often occur when manually transcribing designs into code.
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Evaluation

Project Oxygen emphasizes the use of speech and vision technologies. It reckons the devices as

intelligent resources with which the users can communicate as they would interact with another

person. The concept defines fixed and mobiles devices, a software running on them, furthermore an

intelligent network. These solutions provide platform-independency, routing and other networking

functions, automatic code upgrade on components, support software agents and facilitate the

development of reliable distributed systems.

Oxygen supports the following functional components: Mobility and Location Awareness, Service

Discovery and Code Updater. Mobility and Location Awareness is offered with the deployment of

intelligent networks supporting stationary and mobile (H21) devices. Mechanisms are implemented

within the network in order to create at run-time network topologies and adapt these topologies

according to changes in devices’ location. Service Discovery is supported using the Intentional

Naming System (INS) that describes the services that an application demands in terms of their

properties and a list of attributes. This information is used to find dynamically the corresponding

services that operate within the system. As we described earlier, Code Updater functionality is

provided by the Software Upgrades in Distributed Systems (SUDS) mechanism that is used for

automatically upgrading code for objects in a distributed object-oriented database.

The Oxygen project addresses several non-functional requirements. Adaptability is provided within the

network and the operating system, while openness is provided by allowing adding of new software and

performing software upgrades within the operating system. Support is also provided for the

requirement of security by allowing specification of network rules, specifying which sets of users are

allowed to use particular resources.
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4.1.7  CARISMA

CARISMA [Capra03] exploits the principles of reflection and metadata to support the construction of

adaptive and context-aware mobile applications. CARISMA define primitives to be used by

applications to describe how context changes should be handled using policies. These policies may

conflict. CARISMA has components to handle policy conflicts, based on micro-economic techniques.

CARISMA makes use of reflection mechanisms to provide context awareness and adaptation. If more

than one application is specifying context changes, CARISMA is able to handle conflicts.

Evaluation

The main aim of CARISMA is to address adaptation and openness requirements. Adaptation is

achieved through reflection techniques, for inspection of behaviour over middleware and application.

Openness is allowed through the use of metadata exchanged between the application and the

middleware, with well defined semantics.

4.1.8 LIME

Lime [Picco99, Murphy00] is a model and middleware that extends and adapts the Linda model to the

mobile environment.

Linda and Tuple Spaces. Linda [Gelernter85] is a shared memory model where the data is

represented by elementary data structures called tuples and the memory is a multiset of tuples called a

tuple space. Each tuple is a sequence of typed fields, such as <”foo”, 9, 27.5> and coordination

among processes occurs through the writing and reading of tuples. Conceptually all processes have a

handle to the tuple space and can add tuples by performing an out(t) operation and remove tuples by

executing in(p) which specifies a pattern, p for the desired data. The pattern itself is a tuple whose

fields contain either actuals or formals. Actuals are values; the fields of the previous tuple are all

actuals, while the last two fields of <”foo”, ?integer, ?float> are formals. Formals act like ``wild

cards'', and are matched against actuals when selecting a tuple from the tuple space. For instance, the

template above matches the tuple defined earlier. If multiple tuples match a template, the one returned

by in is selected non-deterministically. Tuples can also be read from the tuple space using the non-

destructive rd(p) operation.

Both in and rd are blocking, i.e., if no matching tuple is available in the tuple space the process

performing the operation is suspended until a matching tuple appears. A typical extension to this

synchronous model is the provision of a pair of asynchronous primitives inp and rdp, which return

null if no matching tuple exists in the tuple space. Processes interact by inserting tuples into the tuple

space with the out operation and issuing rd and in operations to read and remove data from the space.

Lime: Linda in a Mobile Environment. Communication in Linda is decoupled in time and space,

i.e., senders and receivers do not need to be available at the same time, and mutual knowledge of their

identity or location is not necessary for data exchange. This decoupling makes the model ideal for the

mobile ad hoc environment where the parties involved in communication change dynamically due to

their movement through space. At the same time, however, the global nature of the tuple space cannot

be maintained in such an environment, i.e., there is no single location to place the tuple space so that

all mobile components can access it at all times.

To support mobility, the Lime model breaks up the Linda tuple space into multiple tuple spaces each

permanently attached to a mobile component, and defines rules for the sharing of their content when

components are able to communicate. In a sense, the static global tuple space of Linda is reshaped by

Lime into one that is dynamically changing according to connectivity. For example, consider a group
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of professors carrying PDAs, and imagine each of them inserting a business card tuple into their local

tuple space, referred to in Lime as the Interface Tuple Space (ITS). When all professors are in the

same room (or, according to Lime rules, within transitive communication), Lime's transient sharing of

tuple spaces provides a view where it is as if all business card tuples were in the same tuple space, and

accessible to all professors. However, when one professor leaves the room her business card is no

longer accessible to the others, but it remains accessible to her. As shown in the figure below, the

Lime model encompasses mobile software agents and physical mobile hosts. Agents are permanently

assigned an ITS, which is brought along during migration, and reside on the mobile hosts. Co-located

agents are considered connected. The union of all the tuple spaces, based on connectivity, yields a

dynamically changing federated tuple space.

Figure 4.12: Lime’s tuple spaces

Access to the federated tuple space remains very similar to Linda, with each agent issuing Linda

operations on its own ITS. The semantics of the operations, however, is as if they were executed over

a single tuple space containing the tuples of all connected components. In the previous example, a

professor could issue a rd operation and retrieve, non-deterministically, the business card of any of the

professors in the room.

Besides transient sharing, Lime adds two new notions to Linda: tuple locations and reactions.

Although tuples are accessible to all connected agents, they only exist at a single point in the system,

i.e., with one of the agents. When a tuple is output by an agent it remains in the corresponding ITS,

and the tuple location reflects this. Lime also allows for tuples to be shipped to another agent by

extending the out operation to include a destination. The notion of location is also used to restrict the

scope of the rd and in operations, effectively issuing the operation only over the portion of the

federated tuple space owned by a given agent or residing on a given host. For example, a professor can

read the business card of another by specifying the host identifier of her colleague as part of the rd

query.

Reactions allow an agent to register a code fragment---a listener---to be executed whenever a tuple

matching a particular pattern is found anywhere in the federated tuple space. This is particularly useful

in the highly dynamic mobile environment where the set of connected components changes frequently.

Continuing the example above, now a professor (say, Dr. Doe) registers a reaction for business card

tuples and associates a listener for displaying the card contents. As soon as the reaction is registered, it

would fire immediately for each professor, since the business cards are already in the tuple space, and

trigger the display of each card content on Dr. Doe's screen. Similarly, if a new professor walks in the

room with a card in her tuple space, the reaction would immediately cause its display on Dr. Doe's

screen. Like queries, also reactions can be restricted in scope to a particular host or agent.

Nevertheless, the ability to monitor changes across the whole system by installing reactions on the

federated tuple space has been shown to be one of the most useful features of Lime.
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Additional information, including API documentation and source code, is available at

http://lime.sourceforge.net.

Evaluation

Lime provides an integration of data sharing and event notification, therefore providing under a single

model, both a proactive and reactive model of communication. Also, it unifies the logical mobility of

agents and the physical mobility of hosts using a single programming framework. No security is

provided. Lime tuple spaces have also been used to store code [Picco02], context-aware data

[Murphy04], as well as to provide a middleware for sensor networks, as described later [Curino05].

4.1.9 REDS

Publish-subscribe middleware is gaining popularity because the asynchronous, implicit, multi-point,

and peer-to-peer communication style it fosters is well-suited for modern distributed computing

applications. While the majority of deployed systems is centralized, commercial and academic efforts

are focusing on achieving better scalability by exploiting a distributed event dispatching architecture.

Beyond scalability, the next challenge for pub/sub middleware is dynamic reconfiguration of the

topology of the distributed dispatching infrastructure. Companies are frequently undergoing

administrative and organizational changes, and so is the logical and physical network enabling their

information systems. Mobility is increasingly becoming part of mainstream computing. Peer-to-peer

networks are defining very fluid application-level networks for information sharing and dissemination.

The very characteristics of the pub/sub model, most prominently the sharp decoupling between

communication parties, make it amenable to these and other highly dynamic environments. However,

this is true in practice only if the pub/sub system is itself able of dealing with reconfiguration. In

particular, all the aforementioned sources of reconfiguration affect the topology of the event

dispatching network, forcing the middleware to reconfigure its behavior accordingly.

The REDS (Reconfigurable Event Dispatching System) system, currently developed at Politecnico di

Milano, addresses the issue of topological reconfigurations by building on published results that

propose innovative algorithms for content-based pub/sub.

The problem of dynamically reconfiguring a pub/sub system can be regarded as composed of three

sub-problems that involve the:

1. Reconfiguration of the dispatching tree, to retain connectivity among dispatchers without

creating loops;

2. Reconfiguration of the subscription information held by each dispatcher, to keep it

consistent with the changes in the tree without interfering with the normal processing of

subscriptions and unsubscriptions;

3. Minimization of event loss during reconfiguration.

The first problem is currently dealt with by specialized solutions developed for fixed large-scale

networks, and smaller-scale mobile ad hoc networks. The second problem can be solved as described

in [Picco03, Cugola04], by obtaining remarkable overhead reductions with respect to the solutions

available in the literature. Finally, the third problem is dealt in REDS using the solution described in

[Costa04], which exploits epidemic algorithms.

Finally, the very architecture of REDS is highly flexible, enabling the selection of different transport

layers, event matching algorithms, and reconfiguration strategies.
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Evaluation

REDS mostly addresses fault-tolerance and scalability, by enabling distributed content-based pub/sub

even in scenarios where topology undergoes very frequent changes. The content-based pub/sub

paradigm per se addresses openness, in that it enables the development of highly decoupled

architectures.

4.1.10 SATIN

There is growing interest, both in research and practise in self-organising systems, systems that can

adapt to accommodate a new set of requirements. Mobile systems are an extreme instance of highly

dynamic distributed systems; mobile applications are typically hosted by resource-constrained

environments and may have to dynamically reorganise in response to unforeseeable changes of user

needs, to the heterogeneity and connectivity challenges from the computational environment, as well

as to changes to the execution context and physical environment. In the SATIN (Self-Adaptation

Targeting Integrated Networks) project, they argue that mobile computing systems can benefit from

the use of self-organisation primitives. In particular, they argue that the application of logical mobility

primitives as well as the componentisation of the system assist in building self-organising mobile

systems. A component model is required by the application of logical mobility primitives for self-

organisation, and discuss one. The primitives are made available to application programmers using a

light-weight component-based middleware.

SATIN offers the ability to move code and data from device to device, possibly transparently to the

application. Different logical mobility paradigms can be used to make this relocation happen,

depending on what is most suitable. SATIN is component based, which allows the middleware to

range from pretty small configuration to larger ones, but also to reconfigure dynamically based on

context.

Evaluation

SATIN has components for code update and movement. It addresses requirements such as

heterogeneity handling and adaptation, through its ability to reconfigure the logical behaviour or both

the application and the middleware.

4.1.11 STEAM

STEAM [Meier02] is an event service, specifically designed for mobile ad-hoc networks (MANET).

STEAM utilises the Implicit publish subscribe model thus does not require any separate dedicated

fixed cluster of event servers for the p/s to operate. Significantly the implicit publish subscribe model

allows the subscribers to subscribe to particular event types and the publishing entities to publish

events of some type. The entities in STEAM are therefore fully anonymous. STEAM is fully

distributed and the event filtering and event routing functionalities are fully distributed among all the

publishing and subscribing devices. In addition, this organisation has the potential to avoid single

points of failure making it applicable to ad-hoc networks.

STEAM uses a proximity based group communication service [Meier02] as the underlying transport

mechanism for the entities to communicate. For entities to participate in group communication they

must be in the same proximity and be interested in the particular type of event. The proximity based

group mechanism utilised by STEAM enables mobile devices to discover each other once they are

within the same geographical proximity. The proximity group communication mechanism uses a style

that is based on flooding the geographical area concerned with messages at the low level in order to

provide reliable message delivery. The proximity of the group defines the scope within which

messages propagated are valid thereby limiting the propagation of messages beyond its geographical
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area. The draw back of proximity based group communication is entities can only participate in group

communication once they are in close geographical proximity. STEAM supports three different types

of event filters, which are Subject filter, Proximity filter and Content filters. The usage of content

filters enables subscribing entities to express sophisticated queries, which enable fine grain filtering of

events. The subject and proximity files are utilised to address scalability of the system. The proximity

filters specify the scope within which events are propagated; specifically it describes the geographical

area within which events of specific types are valid. In STEAM subject and proximity filters are

applied on publisher side. Events are only routed to subscribers if both filters match. On the other hand

content filters are deployed at subscriber’s side and utilised when an instance of an event is received at

the subscriber side to determine whether or not to deliver the event to the application.

Evaluation

STEAM is limited for publish/subscribe service operational over proximity based ad-hoc networks

only. STEAM uses its own proximity group communication protocol as its underlying transport

mechanism and it is tightly coupled to STEAM. The subscription language of STEAM allows filter

expressions which can be used to match against the values of the set of parameters that comprise a

notification. Therefore STEAM supports content filtering and thus has high expressive power.

However here each device must be able to do complex content filtering and this may not be possible

for resource constrained devices. STEAM utilises the proximity group communication as its

underlying transport mechanism and proximity filters. The underlying transport uses a flooding

mechanism to communicate therefore the entities of a given distributed application which use the

middleware are preferred to be in close proximity, otherwise scalability problems can arise. This

significantly limits the usefulness of the STEAM to specific application domains, where entities are in

close proximity. The applicability of STEAM is limited only to entities in close proximity as it’s is

tightly coupled to the underlying proximity based group communication protocol. This static

implementation suits only mobile ad-hoc networks where entities are in close geographical proximity.

4.2 Middleware for Embedded Systems

It is not the purpose of this survey to report on all the past work on embedded systems as this is not

strictly of interest of the RUNES project. We found interesting however to report on some of the effort

that has been spent in merging the effort some real time requirements middleware and Quality of

Service. We report on one middleware which fulfils these functionalities.

4.2.1 ZEN

The main aim of the ZEN project [ZEN] at University of California, Irvine is to make development of

distributed, real-time, & embedded (DRE) systems easier, faster and more portable; and to provide

open-source real-time CORBA ORB written in real-time Java to enhance international middleware

research and developments efforts. It aims to address many challenges of mission-critical distributed

applications which require real-time QoS guarantees, for example combat, online trading and

telecommunication systems. Building QoS-enabled applications manually is tedious, error-prone and

expensive. Conventional middleware does not support real-time QoS requirements effectively. The

middleware is based on CORBA specification and follows the client-server model. CORBA defines

interfaces, not implementations. It simplifies development of distributed applications by automating

and encapsulating Object location, Connection and memory management, Parameter (de)marshalling,

event and request demultiplexing, error handling, fault tolerance, object/server activation,

Concurrency and Security. CORBA shields applications from heterogeneous platform dependencies

for example languages, operating systems, networking protocols and hardware.

Real-time CORBA adds QoS control to regular CORBA to improve application predictability, by

bounding priority inversions and managing resources end-to-end. The policies and mechanisms for
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resource configuration and control in real-time CORBA include a) Processor Resources: thread pools,

priority models, portable priorities, b) Communication resources: Protocol policies, explicit binding, c)

Memory Resources: request buffering. These capabilities address some important distributed real-time

and embedded application development challenges.

The ORB is based on Java. The motivations for using Java are easier, faster development, large

programmer base and recent real-time Java specification. ZEN is the 5th generation of ORB design.

The first generation was static monolithic ORB (e.g., original implementation of TAO), the second

generation was monolithic ORB with compile-time configuration flags (e.g., second generation of

TAO), the third generation was Dynamic micro-ORB which had small kernel of required functionality

and various components are linked/loaded on-demand (e.g., newest version of TAO & ZEN, GOPI),

the fourth generation was Dynamic reflective micro-ORB here the application description is used to

“prime’’ the ORB, loading required components at initialization- & run-time (e.g., dynamicTAO ),

and finally; the fifth generation is static reflective micro-ORB, here application configuration and

needs are learned by dynamic reflective micro-ORB and a model-based generator builds a custom-

ORB for each application, which can then be compiled and placed into ROM. The trend in new

generations of ORB are clear shift from monolithic, high memory footprint ORB to low memory

footprint micro-ORB kernel where core ORB features whose behaviour may vary are factored out

from the kernel and provided as pluggable alternatives.

The main goal of ZEN is to provide highly configurable real time Java ORB for distributed, real-time

and embedded (DRE) systems applications. The features of the middleware that enable to achieve the

goals are flexible middleware configuration, easy extensibility of middleware and real-time

performance. Flexible Configuration allows small footprint, load classes only as needed on-demand or

at initialization time. Extensibility of the middleware allows to code and compile new alternatives and

dynamically “plug” them in/out of the ORB for example new transport protocols, object Adapters,

IOR formats, etc. The real-time performance is achieved by having bounded jitter for ORB/POA

operations, eliminating sources of priority inversion, enabling access to real-time Java features in ORB

by applications and having low start-up latency.

Figure 4.13: Real time CORBA with ZEN [ZEN]

The above figure shows the architecture of the ORB where core services are factored out as pluggable

alternatives. As shown in the Figure 4.12, core components such as transport protocols, object adapters

have pluggable alternatives. Moreover the optional features such as IOR parsers, GIOP messaging,

etc., also have pluggable alternatives. This makes it possible to custom build a low memory footprint

ORB depending on applications requirements.

Evaluation
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ZEN is essentially a CORBA client-server based middleware for networked embedded systems. The

middleware’s target environment is essentially static wired networked embedded systems and the

middleware crucially provides the functional requirement of real-time support. Since ZEN is based on

CORBA, it supports multiple languages (for example C++ and Java). By using the concept of late

demarshalling, the middleware is able to support multiple languages without memory or performance

penalty. The middleware is highly configurable and most of the functionality of the middleware can be

plugged in and out depending on application profile at deployment time. The middleware does not

address the requirement of adaptability. It addresses heterogeneity at many levels including support for

multiple languages, which is inherited by its compliance to CORBA standard. However it does not

address heterogeneous wireless networks.
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4.3 Middleware for Sensor Systems

This section describes some middlewares for sensor networks.

4.3.1 MiLAN: Middleware Linking Applications and Networks

Amongst the issues that current research in distributed computing has a focus on are high-level

concerns such as the use of replication to improve fault tolerance and techniques that enable high-level

communication abstractions e.g., remote invocation. The end-product is a set of middleware platforms

whose main purpose is make lower-level functionality of the system e.g., network connectivity

transparent to the application and provide a high-level coordination interface to the application

programmer. Since sensor networks have characteristics such as inherent distribution, dynamic

availability of data sources, constrained application QoS demands, co-operation and resource

constraints, simply responding to a changing operating environment is not enough if the required QoS

is to be achieved over an application’s lifetime. This is because more often than not, the reactive

approach leads to application having to sacrifice the quality they need over time. MiLAN argues for a

proactive approach that is mainly characterised by applications actively having an effect on the entire

network.

Middleware Linking Applications and Networks (MiLAN) [Wendi04] is a project at Rochdale

University whose aim is to bridge the gap between what current middleware platforms offer and the

need for ‘proactivity’ i.e. the capability of the middleware platform to enable applications have an

effect on the network and the sensors themselves. It does this by making it possible for sensor network

applications to specify their quality needs and subsequently makes an adjustment on the sensor

network’s properties to meet the applications’ quality needs. It targets a new class of applications

called sensor network applications. These applications are:

• data-driven: they collect and perform an analysis of data from the environment and since

this data’s reliability is affected by noise, redundancy and the sensors’ properties, they

could possibly assign a quality level on the data.

• state-based: being dynamic in nature, the applications needs regarding sensor data are

bound to change over time.

MiLAN uses three sources of information namely:

1. the applications: these issue their QoS needs and ways in which these requirements can be

met using different combinations of sensors to MiLAN.

2. the overall system and the user: this concerns the relative importance of different

applications that run on the middleware and the required interaction between the

applications.

3. the sensor network: this relates to available resources and sensors e.g., sensor energy and

channel bandwidth.

Armed with the above information, MiLAN dynamically adapts the sensor network configuration to

optimise the system’s functionality by proactively specifying which sensors ought to send data and

what roles (e.g., routers in multi-hop networks) each sensor should play. Figure 4.14 presents a high-

level diagram of a system that uses MiLAN.
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Figure 4.14: High-level diagram of a system that uses MiLAN [Wendi04]

As shown in the diagram, each sensor runs a (possibly scaled down) version of MiLAN. MiLAN

receives application requirements, monitors prevailing conditions of the sensor network and

dynamically optimizes sensor and network configurations to make application lifetime as long as

possible. Application needs are represented by use of specialized graphs which incorporate state-based

changes in application needs. Traditional middleware sits between the application and the operating

system but MiLAN’s architecture extends into the network protocol stack as shown in Figure 4.15

below.

Figure 4.15: MiLAN components (shaded)

It sits on top of multiple physical networks and presents an API via which the application presents its

requirements. There also exists an abstraction from the network-level functionality through which

MiLAN issues commands to determine available sensors and configure the sensor network. This
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abstraction layer also makes it possible for network-specific plugins to perform conversion of MiLAN

commands to protocol-specific commands which are subsequently passed through the network

protocol stack.

Many sensor network applications receive data from multiple sources and are expected to adapt as the

number of available sensors at any one time fluctuates. The assumption is that the performance of

applications can be expressed in terms of the QoS parameters in different variables. To test application

performance, MiLAN uses a personal health monitor which comprises variables such as blood

pressure sensor and provides a quality of 1.0 (quality is mapped to a specific reliability in determining

the variable from the sensor's data, with 1.0 corresponding to 100% reliability) to determine this

variable. Additionally, this sensor could measure other variables, such as heart rate with a quality that

is less that 1.0, in determining this variable. The quality of data providing measurement of the heart

rate could be improved using high-level fusion of blood pressure measurements alongside data from

other sensors such as a blood flow sensor. In order to serve the health monitor application, MiLAN

receives information during initialization regarding variable that interest it, the required QoS of each

variable it is interested in and the level of QoS that data from each sensor or sensor-set can provide for

each variable. Figure 4.16 below shows the health monitor sensors.

Figure 4.16: Health monitor sensors [Wendi04]

All these parameters are bound to change as the application runs. The application uses ‘State-based

Variable Requirements’ and ‘Sensor-QoS’ graphs to pass this information to MiLAN. An abstract

State-based Variable requirements graph has the required QoS for every variable of interest to the

application based on the current system state and the variables on interest. The state of these variables

is influenced by an analysis by the application of previously received data. A state comprises a system

state and a variable state and for every state the State-based Variable requirements graph defines the

required QoS for each variable. MiLAN extracts the maximum QoS for each selected variable to

satisfy requirements of all variable states since variables exist for many variable states. The State-

based Variable requirements graph makes a specification of the application’s minimum acceptable

QoS for each variable to MiLAN. These values vary depending on the state of the environment being

monitored at any one instance. MiLAN uses the information provided by the graph as well as the

current application state to determine which sets of sensors meet the applications QoS needs for each

variable.

Evaluation

MiLAN is an example of an “proactive” middleware. Both “proactive” and “reactive” middleware

systems are categories of adaptive middleware, operating in a dynamic environment, such as a

wireless sensor network. Compared to “reactive “middleware systems, which react only by themselves

when changes are occurring within the network, “proactive” middleware systems enable applications

to actively participate in the process of configuring the network where the middleware operates. Such

a reactive behavior is supported by the MiLAN middleware, by allowing applications to specify their

QoS requirements and also the policies that dictate how the middleware should react when the

applications requirements are not met in a given network instance. The middleware uses this input



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 50 of 83

from applications and trades off applications’ performance with the network cost. At the same time,

the middleware retains the separation between the policy that specifies how the middleware should

react (the policy is provided by the application) and the mechanisms that implement the policy (these

mechanisms are implemented in the middleware).

Given the dynamic nature of a wireless sensor network, MiLAN uses services discovery protocols,

such as SDP [Avancha02] or SLP [SLP]. This is needed to discover new nodes and be aware when

nodes become inaccessible (either as a result of mobility or loss of battery power). The discovery

protocols must return the data type that a discovered node can provide and modes in which it can

operate, the node’s transmission power levels and residual energy level. Using this information from

each currently available node, the network plug-in in MiLAN’s architecture determines which sets of

nodes can be supported by the network. This mechanism aims at satisfying the requirement of

feasibility. More specifically, in a given network instance, only the subset of nodes that can be

supported by the network are considered by the middleware as candidate nodes that could be used to

support the application’s requirements.

4.3.2 Impala

Wireless sensor networks typically comprise a number of geographically dispersed and as a result,

they present a new domain of parallel/distributed computing which is gaining considerable interest

amongst researchers in academia and industry. Even though sensors have little computational and

communication resources, they are expected to sense their environmental parameters often for long

periods of time and communicate it via the network to other nodes or to a base station. This

uncertainty in sensor networks (communication and computation-wise) presents the need for a highly-

tuned operation in which implemented mechanisms are able to handle a range of possible parameter

values. Incorporation of adaptation in sensor network systems presents a panacea to the plethora of

issues that result from the modesty in computation/communication resources in wireless sensor

networks.

Impala [Liu03] is a middleware system that was designed as part of the ZebraNet mobile sensor

network. Its inspiration was out of the observation that sensor networks are long-running and

autonomous. They therefore have a requirement for a system that manages and fine-tunes applications

on each node to ensure reliability and ease of upgrades during the application’s entire lifetime. It

proposes a system that serves the role of a lightweight event and device manager for each mobile

sensor node. The ZebraNet project comprises a mobile sensor network system whose objective was to

explore ways to improve wildlife tracking technology by use of energy-efficient tracking sensors and

peer-to-peer communication amongst nodes. Sensors are positioned on free-ranging wildlife to help

perform long term observation of migratory tendencies in animals. It also handles connectivity issues

in mobile nodes by enabling interoperability of a set heterogeneous protocols.

As shown in Figure 4.17 below, Impala adopts a layered approach in which the upper layer comprises

all the application protocols and programs. Their task is to gather environmental data and subsequently

route it to the base station in a peer-to-peer network. Impala’s lower layer comprises three middleware

agents:

• the Application Adapter: adapts the application protocols at run-time to the changing

environmental conditions.

• the Application Updater: receives and transmits updates wirelessly, installing them on the

node.

• the Event Filter: does capture and dispatch of events to the above two layers.
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Figure 4.17: Impala’s Layered Architecture

Impala classifies the events it handles into five categories: i) Timer Event which signals that a timer

has gone off, ii) Packet Event which signals that a packet has arrived, iii) Send Done Event which

signals that a packet has been sent or there as been a failure sending it, iv) Data Event which signals

when a data sample from the sensor is ready to read, v) Data Event which signals that a sensor failure

has occurred.

As illustrated in Figure 4.17 above, Impala has an event-based programming model in which the

applications, the Application Adapter and the Application Updater are programmed into event

handlers that are invoked by the Event Filter when packets are received. The user library comprises

some programming utilities that are accessible to the adapter and updater. The Networking utilities

make it possible for applications to send asynchronous packets after which they generate send done

events to the event filter. Timer utilities give applications the ability to set up timers e.g., to send

packets ate regular intervals. Device utilities on the other hand give applications control over hardware

e.g., turning the transceiver on and off. Impala defines a uniform storage image that comprises a list of

data generated from the local sensor and a list of data received from other sensors. It also maintains a

list of data that has been routed to the base station successfully.

In the following, we will describe in more detail the main functional components of Impala, the

Application Adapter and the Application Updater components.

Application Adapter: Impala’s event-based application programming model uses this agent to respond

to the events mentioned above. Whenever events such as timer events signal that some action has

taken place, the Application Adapter may query the system or application states to determine if

adaptation should occur. Although programming the applications to make adaptation decisions would

be more flexible, Impala’s Application Adapter makes adaptation decisions as unlike applications, it

has a global overview of the entire system state. It defines a set of application parameters (only known

to a particular application) alongside another set of Impala parameters which represent runtime states.

The Application Adapter performs two kinds of adaptations. In the parameter-based adaptation, each

application tracks a subset of application parameters and reports their changing values. An Application

Parameter Table in the Application Adapter agent maintains a list of which application tracks what
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parameters. The adapter periodically queries the active application for parameter values that it tracks,

gets the system parameters at that instant and examines the rules that activate a switch. Should any

rule be met, the adapter triggers a switch. In order to prevent the periodical querying operation from

competing for network resources with the nodes, application queries occur at the end of the network

activity period.

Figure 4.18: Adaptation Finite State Machine

The adapter makes adaptation decisions by examining the Adaptation Finite State Machine (AFSM)

which has states that suit different applications as shown in Figure 4.18 above. The arrows represent

adaptive transitions while the parameter expressions above each arrow are the conditions under which

adaptation occurs.

The device-based adaptation occurs when the Application Adapter performs periodic queries and

discovers a piece of hardware that does not respond. An Application Device Table has records of

which applications use which device. Impala tracks up to eight hardware devices although the

ZebraNet project only has three - the GPS transceiver, a short-range radio and a long-range radio.

Application Updater: Impala’s updater is designed to meet a unique set characteristics that were

observable in the ZebraNet project (indeed these characteristics also exist in other sensor networks).

These include i) High Mobility - sometimes moving in clustered patterns, ii) Constrained Network

Bandwidth as a host of sensors collect data from the environment and transmit it back to a base station,

iii) Wide Range of Updates ranging from bug fixes and application enhancement code to

addition/deletion of applications. The updater’s role is to use a mechanism that achieves updates for

mobile wireless sensor networks that have resource constraints. To manage software, it stores

complete and incomplete update versions in the code memory. The complete versions are logged

awaiting execution while incomplete versions are logged awaiting resumption should the update be

available again. An on-demand strategy is used to transmit updates and sensor nodes periodically share

their version information with others and only exchange code upon request.

Evaluation

Impala exploits mobile code mechanisms to adapt the functional aspects of the middleware that runs at

sensor nodes. These sensor nodes are implemented in a modular way facilitating updates that are small

and that introduce little transmission overhead. The novelty in its contribution stems from the fact that

that it explores a software architecture which suits minimal performance and energy impact for code

that runs on sensor nodes that are typically energy constrained. Furthermore, it adopts a middleware

layer that is able to update and adapt applications at run-time via new protocols being plugged in.

Currently, Impala’s adaptation is based on local states of local sensors although there are plans to

include the entire sensor network.

ZebraNet’s first version is rather simplistic as it has the application running only a communication

protocol which transmits data wirelessly to the base station. In the absence of a more complex

application software that incorporates event filtering, noise filtration and sensor data fusion, it is

difficult to judge Impala’s performance as a sensor network middleware.

P0<1 and P1>50%

         P1<10%

P0: Average no. of direct

      neighbours over the last k cycles

P1: Battery Level
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Adaptability is also provided by the adapter agent which disables protocols that need to use a failed

device should a sensor fail and switches to an application that does not need a failed sensor device

should an active application be disabled.

Impala does not address heterogeneity issues since its implementation is on a single hardware platform

in which a hardware node comprises a GPS, a transceiver and a micro-controller CPU with 1-8 MB of

volatile storage. It is being prototyped for the HP/Compaq iPAQ Pocket PC handheld which runs the

Linux operating system.

4.3.3 AutoSeC

Automatic Service Composition, AutoSeC [Han01] is a middleware framework whose focus is on

provision of support for dynamic service brokering for effective utilization of resources within a

distributed environment. Distributed applications have QoS requirements that can be translated into

the underlying system-level resources and in this respect, AutoSeC performs resource management

within a sensor network by granting access control to applications in order to meet QoS requirements

on a per-sensor basis. Crucially, meeting these requirements entails the AutoSeC middleware

dynamically choosing a combination of information collection and resource provisioning policies from

a given set which is based on the users’ needs and the system state. Since the choice of policies is done

by AutoSeC, the application developer or system administrator is relieved from the tedious task of

having to make a choice from the set of policies that are available.

AutoSeC comprises a middleware infrastructure that offers support for adaptive selection of optimal

information collection and resource provisioning service combinations. This is done in a transparent

manner, ensuring that the application is not involved in the complex decision-making process. Figure

4.19 below presents an overview of the AutoSeC framework.

Figure 4.19: The AutoSeC Dynamic Service Broker Framework

AutoSeC’s directory service is centralized and stores system state information concerning three

categories of parameters: i) network parameters, such as bandwidth and end-to-end delay, ii) server

parameters, e.g., buffer capacity, CPU utilization, disk space, and iii) client parameters, e.g., client



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 54 of 83

connectivity, capacity etc. Each of these parameters can be represented by either one value or a range

of values with an upper and lower value.

The information collection module determines whether to update the information repository with the

current system image. This is influenced by the rate at which samples are collected. The higher the

sampling interval, the higher the accuracy of the directory service’s information, and the higher the

overhead introduced to the system. Hence the information collection module has to maintain a balance

between the information accuracy and the overhead introduced by the directory service maintenance.

The resource provisioning module uses information received from the directory service regarding the

current system state to perform resource allocation. It uses intelligent mechanisms to choose

appropriate resources, e.g., servers, routing paths to service QoS based requests. It takes into account

the current network and server utilization parameters provided by the directory service to allocate

resources in a way that optimizes overall system performance. Once new clients are assigned a path

and/or server, they set up a connection to the assigned server on the assigned path. Routers and servers

along the assigned path check their residual capacity and could perform either of two actions; admit

the connection and reserve resources or reject the request. Once the connection of a client to a server

terminates, the client makes a termination request and the resources along the formerly assigned path

are reclaimed by the resource provisioning module.

The network monitoring modules are distributed with each module monitoring parts of the entire

network. Each module probes routers and servers to collect system state information. These probes

consolidate the sample values collected by the routers and servers before they forward them to the

monitor. The network monitoring modules finally transmit the information to the information

collection module which performs updates on the directory service.

AutoSeC’s dynamic service broker performs all the decision-making functions regarding what

combinations of resource provisioning and information collection policies are those that satisfy user

requests and match current system conditions. It also decides when to switch these policies at run-

time.

The AutoSeC system implements a number of strategies for information collection and resource

provisioning. These mechanisms are discussed below.

Network and Server Information Collection Policies:

These include the:

• System Snapshot Based Information Collection in which all the information about the

residual capacity of the network nodes and server nodes is based on an absolute value

obtained from a periodic snapshot.

• Static Interval Based Information Collection in which the residual capacity information is

collected using a lower bound L, and an upper bound H with the actual value assumed to be

uniformly distributed across this range. Hence the expected value is computed using

(H/L)/2 9 [Apostolopoulos98].

• Throttle Based Information Collection in which the directory service has a range of upper

and lower bounds that vary dynamically for the parameter that is monitored. In this policy,

should a sampled value fall within the current range for a specific period of time, the range

is tightened by a pre-defined ratio. On the other hand, should the current sampled value fall

outside the range for a specific period of time, the range is relaxed.

• Time Series Based Information Collection which implements a two-phase information

collection procedure. This policy uses simple statistical analysis based on time-series. The

first phase derives a range of values so that the deviation of the predicted values from the

observed samples is within a certain confidence level. Depending on the size of the range

and the associated confidence level, this policy determines a bound on the rate at which



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 55 of 83

sampling occurs. The second phase involves a dynamic adjustment of the range and the rate

of sampling by the information collection process. This is entirely based on burstiness of

incoming traffic.

Table 4.1 below provides a summary of the Information Collection Policies implemented in the

AutoSeC framework.

Table 4.1 Family of Information Collection Policies [Liu03]

Resource Provisioning Policies:

This type of policies helps in utilizing network and server resources, such that the QoS requirements of

applications running on top of AutoSeC are met. Policies of this type are the following:

• Server Selection (SVRS) which implement mechanisms that enable clients to discover an

optimal replica for a given service/document that is replicated across distributed servers.

Two server selection policies are evaluated in AutoSeC: i) the Least Utilization Factor

Policy (SVRS-UF) which selects the server that has minimal utilization in terms of four

observable parameters – CPU cycles, memory buffers, I/O bandwidth and network transfer

bandwidth, and ii) the Shortest Hop Policy (SVRS-HOP) which chooses the nearest server

in terms of the number of hops between the replication source and destination. In case of a

tie, the SVRS-UF policy randomly picks one server while the SVRS-HOP policy selects

the least loaded server.

• Combined Path and Server Selection (CPSS) which are based on the premise that in order

to achieve better system-wide utilization, applications that are sensitive to QoS parameters

need high-level provisioning strategies which address route selection and server selection in

a unified way. Therefore, given a client that makes a request with QoS requirements, its

algorithm chooses a server and links which maximize resource utilization. Load balancing

is therefore possible between replicated servers and among network links.

Simulations have been carried out to assess AutoSeC’s performance and to determine the most optimal

combination of information collection policies with resource provisioning policies under a range of

system loads.

Evaluation

AutoSeC, as MiLAn, is another example of “proactive” QoS-aware middleware. Having as input the

applications’ requirements and the network state, the middleware implements a decision-making

process in order to choose which information collection and resource provisioning policies should be

enforced. Compared to MiLAN, where policies are specified by the application, AutoSec’s policies are

only defined a priori within the middleware and in consequence only the middleware can perform

resource allocation. However, it in not clear if and how the set of information collection and resource

provisioning policies can be updated. This would be required in cases where the existing set of policies

can no longer cater for the applications’ requirements.

Resource management is realized through the resource provisioning module’s run-time allocation of

resources to new clients and reclaiming of resources once a new client terminates a connection to a

particular server.
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Future research directions in AutoSeC include the provision of a set of network management

middleware services targeted at applications that are network-aware. Essentially, this would involve

adaptation of current network management mechanisms for provision of a dynamic and relevant set of

information to the AutoSeC middleware. Additionally, an extension of the current centralized

directory services to incorporate distribution would enhance scalability of the framework.

4.3.4 DSWare

Despite the fact that sensor networks are characterised by limited computing resources, they must be

operational for long periods of time. This implies that efficiency in power consumption is very

important in order to prolong a sensor network system’s life-time. Apart from being unreliable,

wireless communication introduces the most significant overhead in power consumption and in order

to optimise data transmission from sensor nodes, sensor networks initiate data collection and

transmission via queries and subscriptions. Sensors also transmit a large amount of data and to

minimize unnecessary transmission of data, nodes sometimes work together or use intermediate sensor

nodes to do filtration of data before it gets to its destination i.e. the base station. The argument that

forms a basis for the design of DSWare is that addressing these issues requires an approach that

‘builds trust’ on a group of sensor nodes as opposed to any single node.

Data Service Middleware (DSWare) [Li03] is a specialized layer that does an integration of various

real-time data services for sensor networks and in so doing, provides a data-base like abstraction to

sensor network applications. It offers support for group-based decision making and reliable storage to

improve real-time system performance, reliability of aggregated results and reduction in

communication overhead. DSWare’s design as a specialized layer provides an abstraction of data

services to applications. This makes it possible for application programmers to avoid re-implementing

the common data service part of applications. It also hides come characteristics of sensor networks

such as unreliability in sensors and their communication, complexities such as group coordination and

data fusion and the large volumes of data by providing a generic data service to sensor network

application programmers.

As shown in Figure 4.20, DSWare provides a data service abstraction to the applications that run on it.

Figure 4.20: Software Architecture in Sensor Networks

Its architecture separates routing operations from it and the network layer because its group

management and scheduling components are used to enhance power and real-time-awareness of the

routing protocols. Figure 4.21 below, illustrates DSWare’s framework.
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Figure 4.21: The DSWare Framework

As can be seen in the above figure, DSWare is comprised of several components each of which serves

a well-defined need. Each of the components is described below.

Data Storage: DSWare’s Data Storage component stores data according to the semantics that is

associated with the data. It has a data look-up operation and offers support for robustness should there

be node failures. It also has operations via which data that is correlated can be stored in geographically

adjacent regions. This has two advantages: it enables data aggregation and also makes it possible for

the system to perform in-network processing.

To facilitate data look-up, DSWare maps data to physical storage using two levels of hash functions.

At the first level, the hash function maps a key (a unique identifier which each data type has) to a

logical storage node in the overlay network. As a result of this operation, storage nodes form a

hierarchy at this level. The second level involves mapping a single logical node to multiple physical

nodes such that a base station performing a query operation has the data fetched from one of the

physical locations.

There is a big risk in mapping a given data type to a single node as this data could be lost as a result of

node failure. Furthermore, mapping data to a single node in the sensor network causes bursts of traffic

to the node which causes collision and a higher rate power consumption. DSWare uses an approach in

which data is replicated in multiple physical sensor nodes which can be mapped onto a single logical

node. Load balancing occurs since queries can be directed to any one of the physical nodes and the

lifetime of individual nodes is prolonged since power consumption is substantially reduced. With

replication of data amongst multiple nodes come consistency issues. DSWare adopts ‘weak

consistency’ to avoid peak time traffic since only the newest data amongst nodes is bound to lack

consistency. This new data is propagated to other nodes and the size of inconsistent data is bounded so

that replication occurs when the workload in individual nodes is low.

Data Caching: The function of this component is to provide multiple copies of data that is most

requested. DSWare spreads cached data out over the network so that availability is high and query

execution is faster. A feedback control scheme is used to dynamically decide whether or not copies

should reside in frequently queried nodes. This control scheme uses inputs such as proportion of

periodic queries, average response time from data source etc to guide nodes in making decisions about

whether or not a copy should be kept. This component also monitors the usage of the copies to decide

whether to increase/reduce the number of copies or move them to a new location.

Group Management: This component has the task of ensuring that there is cooperation between the

functionality of various nodes. When nodes in a group provide a value that is agreeable to most of

them, this value has a higher confidence that when there is disagreement between nodes. Secondly,



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 58 of 83

Group Management also makes it possible for the system to notice nodes that provide suspicious

values and exclude values received from them in the performance of computations. Some

computations e.g., those that involve speed and movement require the use of more than just a single

sensor to accurately compute. The Group Management component also makes it possible for energy-

saving actions such as putting some nodes to sleep. DSWare forms groups as a query is sent out and

dissolves them at the expiry of the task. To accomplish this, a group formation criterion is sent out to a

queried area and nodes join the group by checking whether or not they match the criterion. Groups

could either be fairly stable once nodes join it e.g., those that measure temperature. Others could be

dynamic e.g., those that track a vehicle’s motion and in this case, changed criterion gets broadcast

persistently in a small location and nodes can join or leave the group as the target is in motion.

Event Detection: DSWare uses SQL-like statements to register and cancel events as this approach

provides applications with a simple interface. Applications can insert events to the sensor network

without modifications in the code. This is beneficial to applications which need event detection

services regardless of the data service middleware that provides the service. This approach may not be

the most optimal in certain cases as it inevitably introduces a parsing overhead (parsing consumes

memory and processing power) which DSWare has to perform once the SQL-like statements are

issued. A more energy saving approach would be to provide method signatures to applications as

sensors have inherent limitations in processing power and memory capacities. DSWare’s argument for

the use of SQL-like statements is that they are expressive and provide the desired flexibility to satisfy

many event notifications.

Data Subscription: Data subscription queries provide sensor networks with their own characteristics

such as data feeding paths, stable traffic nodes for the paths and possible merges for the feeding paths.

When many base stations make subscriptions for data from the same sensor node, the Data

Subscription service in DSWare puts copies of the date at intermediate nodes in order to save on

communication costs between the node and several subscribing base stations. It also changes the data

feeding paths dynamically e.g., when it detects the proximity of two paths, it merges them by placing a

copy of the data at an intermediate node which then transmits data to the subscribers at their respective

requesting intervals.

Scheduling: This component plays the role of scheduling services to all DSWare components. It

provides two scheduling options: energy-aware and real-time scheduling. The default scheduling

mechanism is the real-time option (EDF, EDDF, with or without admission control) since most queries

in sensor networks are real-time in nature. When requirements for real-time scheduling have been

satisfied, DSWare can also apply the energy-aware mechanism. Importantly, the scheduling schema is

specified by individual applications based on their most primary concerns.

Evaluation

DSWare aims at providing an abstraction of data services to applications since current sensor networks

applications have to implement the entire stack of application-specific data services. It frees

applications from low-level tasks and enables them to use data from sensor nodes using interfaces that

are similar to conventional databases. Its implementation is similar to AutoSec’s data service

abstraction but the subtle difference is that DSWare uses a group of geographically close sensors to

provide data.

DSWare handles the run-time change in data sources by using the Group Management component to

handle stable and dynamic groups of nodes which either leave or join groups.

Future work in DSWare involves an extension of the Data Storage component’s design to enable

mapping of data to regions that are within the immediate geographical vicinity. This capability in

DSWare has huge potential to promote data aggregation and in-network processing.
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4.3.5 “Adaptive Middleware for Distributed Sensor Environments” [X.Yu03]

Another adaptive middleware for sensor networks is described in [X.Yu03]. The basic idea here is that

resource/quality trade-offs can be exploited dynamically in order to reduce energy consumption in the

context of information collection in distributed sensor environments. Furthermore, the proposed

middleware exploits the predictability of sensor readings, stemming from the predictability of the real-

world phenomena the sensors monitor, in order to further reduce communication overhead and thus

energy consumption.

Two main architectural components within the middleware provide its adaptive behavior. The first

component, the adaptive precision setting component has an input data from a translation module,

which is used to translate a given application quality (AQ) requirement to corresponding quality

requirements on data (DQ) collected by sensors. The adaptive precision setting component then

expresses the data quality obtained from the AQ-DQ translation as a tolerable measurement error and

communicates this information to the sensors. In their turn, on the basis of the error tolerance

communicated by the adaptive-precision-setting process on the middleware, sensors implement new

filters on sensor-generated data.

In addition to the adaptive precision setting component just described, the framework includes a

second component, the prediction module, that executes in parallel with the precision-based module.

In prediction-based adaptation, the middleware compares a sensor’s current reading with its previous

reading to determine whether an update is needed. If the sensor and server sides of the middleware

agree that the two readings are the same, then a message exchange isn’t needed. In general, more-

complicated prediction models can exploit sensor reading predictability to further reduce

communication cost. The prediction module implements prediction models that both the sensor and

server agree on in order to enable adaptation. More information about on how sensor’s data history

values can be used to select which prediction model to use (against a set of predefined ones) can be

found in [X.Yu03].

Evaluation

This middleware provides adaptability through the implementation two specific adaptation

mechanisms. The first mechanism adapts the filters on sensor-generated data based on the precision

settings demanded by the application, while the second mechanism tries to predict the sensors’ data

values in order to reduce the communication cost of sending messages containing updated values of

sensors’ readings.

Although both mechanisms can be proven useful for data-driven applications running within a wireless

sensor network environment, the middleware does not provide support for other types of QoS

adaptation which may be needed for other types of applications, other than those expressing their QoS

requirements in terms of their precision settings. For example, real-time applications could require

QoS guarantees in terms of bounds of delay and packet loss within the network. No support is

provided to address additional non-functional requirements, such as scalability and heterogeneity.

4.3.6  “Issues in Designing Middleware for Wireless Sensor Networks”
[Y.Yu03b]

State-of-the-art design of network protocols and applications in wireless sensor networks are usually

closely coupled or combined as a monolithic procedure. This indeed limits the reuse and the

extensibility of such application and it arises the need for a different approach that separates

application semantics from the underlying infrastructure.

The paper firstly highlights amenable features that should belong to a middleware for sensor networks,

namely data-centric communication, application knowledge, localized algorithms, lightweightness and
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the ability of trading the QoS of various applications against each other. Then, it introduce the

purposed approach: a cluster-based architecture that includes a cluster layer responsible of creating

and maintaining cluster according to different policies (e.g., data accessibility, node capability or

network connectivity) and a resource layer in charge of resource allocation within the clusters. Each

cluster contains a set of spatially adjacent sensor nodes that cooperate together to provide a specific

functionality. Application tasks are distributed over different nodes according to the QoS required by

the application and the cluster policy adopted.

Simulation results are provided to evaluate the performance of this approach.

Architecture

Figure 4.22: System architecture

The Cluster Layer is responsible for forming a cluster from a pool of sensor nodes that are around the

target phenomena. Different criteria may be adopted to partition the network, e.g., network

connectivity, physical proximity and node capability. These demands for on the fly self-configuring

distributed clustering mechanism, capable of dynamically determine the membership of nodes as the

phenomena move. Authors do not address this issue specifically but suggest some references.

The other component is the Resource Management Layer, which controls the allocation and adaptation

of resources. In particular, resource allocation concerns the mechanisms for finding an initial viable

solution when the cluster is formed, while resource adaptation commands the runtime behaviour of the

cluster.

Inputs from the application include application structure, data/control flow, resource requirements, and

performance constraints. It may also include policies for fidelity adaptation and trade-off with other

applications. A critical open problem is the development of a formalized general specification for

representing the above information.
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The allocation phase is driven by a three-phase heuristic, described in a previous paper, is presented. It

may be roughly summarized in the following steps:

• Tasks are partitioned into task groups, which are groups of tasks to be assigned on the same

sensor nodes. The goal is to minimize the overall execution time of the application. A

simple FIFO policy is adopted.

• A greedy policy is used to find an assignment of the tasks group obtained previously onto

the actual sensor nodes within the cluster to minimize the maximal energy dissipation

among all nodes

• The voltage and the modulation settings of tasks or communication activities are adjusted in

an iterative fashion.

Routing mechanisms are not described since the authors assume to leverage off existing network

protocols.

Evaluation

The main focus of this paper is on adaptability, especially with respect to application needs. All the

work is fostered by the need of providing a middleware, able to modify its behaviour according to

what specified by the application. Authors projected their cluster layer to deal with changes in the

network. As for fault-tolerance they cite an existing work in literature where a clustering algorithm,

able to face node crashes or disconnection, is presented. Similarly, energy-awareness is not addressed

directly but it is delegated to the adoption of techniques found in literature.

The main weakness of the paper, with respect to the non-functional dimension we identified, regards

its feasibility since it stresses mainly the design of the architecture and the heuristic for resource

allocation, while it does not spend many words in discussing issues related to energy-consumption or

fault-tolerance by redirecting the reader to the included bibliography.

4.3.7 Design and Implementation of a Framework for Programmable and
Efficient Sensor Networks (SensorWare)

In this paper the authors argue that the development of a framework based on a mobile agent

abstraction will make the sensor networks programmable and open to external users and systems,

keeping at the same time the efficiency that distributed proactive algorithms have. This work

introduces and describes a new framework, Sensor Ware, which defines, creates, dynamically deploys

and supports such agents.

Mobile agents are TCL scripts migrating from node to node. The scripts are made mobile using extend

language commands and directives. Its programming paradigm should allows the implementation of

almost arbitrary distributed algorithms, since the collaboration structures among sensor nodes are up to

the programmer.

 The sensing, communication, and signal-processing resources of a node are exposed to the control

scripts that orchestrate the dataflow to assemble custom protocol and signal processing stacks. A script

can replicate or migrate ("populate") its code and data to other nodes, directly affecting their

behaviour.

The wireless sensor network is seen as a whole, an aggregate so that a user connected to the network

may inject a (possibly distributed task) over the network.

The approach to WSN programmability that is used by SensorWare, as opposed to the traditional

distributed-database view, is the active sensor approach. The term indicates a family of frameworks

that try to task sensor nodes in a custom fashion, much like active networks task network nodes. The
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main difference is that active sensors have to react also to events other than network ones, such as

sensing events or timeout.

Architecture

Figure 4.23: SensorWare architecture

The overall architecture is depicted in Figure 4.23. The lower layers are the raw hardware and the

abstractions (e.g., device driver) needed to communicate with it. OS is sitting on top of lower layers,

providing services and functions for a multithread virtual machine as required by upper layers.

SensorWare is integrated into OS and supplies the support for the control scripts. Standard

applications coexist with mobile scripts, exploiting the functionalities offered by the OS as well as

abstractions provided by SensorWare.

SensorWare provides a set of extension to standard TCL, notably functionalities for moving and

relocating code. The general programming paradigm that is adapted is event based. Basically, an event

is described and tied with the definition of an event handler. The event handler, according to the

current state will do some processing and possibly create some new events and/or alter the current

state.

Two different task classes are present: fixed tasks and platform-specific ones. Fixed tasks are always

included in every SensorWare implementation and handle system functions such as radio transmitting,

tasking allocation and so on. Conversely, platform-specific depends on the specific hardware

configuration. Examples falling in these categories are sensor abstractions that enable communication

among OS and sensing devices.

Portability is addressed to by creating abstract wrapper functions to clearly separate middleware code

from the OS and hardware specific code.

The system has been implemented on the iPAQ 3670 and it was deeply analyzed with respect to

memory size, delay and energy consumptions.

Evaluation

The aim of the paper is to supply a flexible yet effective way to enable sensor networks to modify

dynamically their behaviour according to the needs of multiple transient users (openness).

Heterogeneity is well addressed since through the architectural design based on wrapper functions,

the system is able to run on different hardware and platforms. Energy-efficiency is also considered

and the authors provide the result of their experiments, aimed to show the low energy consumption.

Nevertheless, it is not clear if and how it could be implemented on motes (feasibility), since the

platform chosen for the implementation, the iPAQ, is provided with completely different hardware. A

more interesting test would have been a real implementation on a sensor platform to verify that

SensorWare satisfied the high constraint requirements as imposed by sensor networks.
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4.3.8 TinyLime: Bridging Mobile and Sensor Networks through Middleware

This work aims to exploit the transiently shared tuple space metaphor as provided by LIME (an

extension of LINDA to supply a tuplespace abstraction in a mobile environment) in the context of

sensor networks. The resulting model and middleware, called TinyLime makes sensor data available

through a tuple space interface, providing a data sharing abstraction among applications and sensors.

In LIME (context) data provided by each mobile unit is transparently shared based on connectivity and

data can be accessed proactively (queries) or reactively (reactions/events). In TinyLime the

programmer still sees a transiently shared tuple space, which however contains also sensor data.

However, considering a mote just like another Lime host would be impractical. Instead, a mote is part

of the system only if currently connected through same base station and it is “seen” as if it were

another agent on the base station’s host. This clearly implies a different implementation where no

tuple space is available on the mote but query operations on the federated tuple space span not only

hosts and agents, but also motes. Nevertheless, sensor data in the tuple space is read-only and reactions

are extended with a notion of freshness.

The operational settings targeted by TinyLime removes the usual assumptions of a central collection

point for sensor data. Instead the sensors are sparsely distributed in an environment, not necessarily

able to communicate among themselves, and a set of clients move through space accessing the data of

sensors nearby, yielding a system which naturally provides context relevant information to client

applications. We further assume the clients are wirelessly networked and share locally accessed data.

This scenario is relevant, for example, when relief workers access the information in their work area

and share this information with other workers.

Data is cooperatively collected by mobile monitors interconnected through a MANET, which can

access only those sensors that are directly available to them. Communication between the mobile

monitors is entirely handled through LIME through a new layer that is built entirely on top of it to

interact efficiently with the specialized components deployed on the sensors. It does not require multi-

hop communication among sensors and places little computation and communication demands on the

motes.

TinyLime was entirely developed in nesC on XBOW Mica2 motes and code is available for download

at http://www.leet.it/pwp-motes/static/WebSummary.html



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 64 of 83

Architecture

Figure 4.24: TinyLime architecture

In TinyLime’s model clients interact with motes through by MoteLimeTupleSpace, who refines

the normal Lime tuple space interface. Queries are in the form

rd[cur][dest][moteid][freshness](p) where p is a pattern with the following format:

<SensorType,SensedValue, Epoch, Date>. Reactions work as in Lime, but are extended

with the ability to match against inequality and on value ranges. Additional methods are provided to

directly perform actions on one mote, or on all those in range (e.g., setBuzzer, setDutyCycle,

setSensingTimeout, setRadioPower).

MoteLimeTupleSpace provides the illusion of a single tuple space containing sensor data. Inside

it, two base Lime shared tuple spaces are used:

• The config tuple space is used to communicate requests.

• The motes tuplespace stores the actual data.

Request processing “emulates” (asynchronously) a client-server paradigm using the shared tuple

space. A read request generates a tuple in the client config tuple space and simultaneously registers a

reaction on the motes tuple space. Thanks to sharing, the agent on the base station is able to react and

trigger processing on the motes to fetch results.

Sensed data is stored in the motes tuple space, where it triggers the client reaction which delivers the

data.

Data are stored in the tuple space only on demand i.e., when a request is issued towards a mote.

Subsequent requests are answered by returning the cached data, and do not involve the mote anymore

until the data becomes stale, i.e., no longer fresh. Freshness is a parameter configurable on a per-

invocation basis. This is required to save power on the motes. On each base station, operation

processing as well as management of the sensed data is performed by an instance of MoteAgent that

installs reactions, processes requests, and purges stale data.

TOSMoteAccess translates the high-level requests of MoteAgent into messages towards sensors

(read, reaction, stop, set). It is highly decoupled and since it does not contain anything specific to
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Lime, it can be reused in other projects. Read operations simply involve a request-reply pair but

timeout may cause retransmission by the base station

Reactions are performed without storing state on motes (the base station queries the mote once per

epoch) because otherwise would occupy resources, and complicate handling of disconnection.

Motes are not always on, to save power. However, power is not an issue for the base station, which

therefore can safely broadcast a message repeatedly. TinyLime do not explicitly control when each

mote wakes up. In principle several motes may end up competing for the channel.

An algorithm (wakeup scattering) to adjust mote wakeup-times to prevent transmission collisions is

provided:

1. At the beginning of the first round, the process is initiated by a special packet sent by one of

the motes or an external agent.

2. After receiving this packet, each mote randomly places its wakeup time within the epoch

and, when this time arrives, sends a scatter notify packet.

3. During the entire epoch, each mote records the arrival times of the notify packets of the

others. Only two such packets are of interests, the one received immediately before the

transmission of the mote s own scatter notify, and the one received immediately after.

4. At the end of the epoch, the mote finds the midpoint between these two transmissions, and

moves its own wakeup time closer, but not exactly, to this point.

5. The process of detecting the scatter notify packets and moving the wakeup time can be

repeated any number of times, iteratively refining distribution. The current implementation

of TinyLime works on the Crossbow mote platform (TinyOS) and is written in nesC.

Evaluation

The operational setting as proposed by TinyLime, in contrast with mainstream approaches, does not

assume a centralized data collector. This results in a more flexible system, able to deal with changes in

network topology, geared towards highly dynamic and mobile systems (fault tolerance and

adaptability). Further, the abstraction provided takes advantage of Lime’s content-based, transparent

context access, freeing the user from being aware of physical data location, since she can access them

simply performing a read on tuple-space. Finally, it keeps into account power consumption by

exploiting a distributed protocol to wake up motes, so saving battery and increasing network life

system. A kind of heterogeneity is addressed as well, since the communication takes place among

mobile station, each of which may communicate with different sensor, provided with the appropriate

network interfaces. Conversely, it shows some drawbacks, due to its early development: the query

language is rather simple (though accommodated by the last version of the tuple space engine,

LighTS) and, currently it does not provide any multihop access to motes.

4.3.9 EnviroTrack: Towards an Environmental Computing Paradigm for
Distributed Sensor Networks

The work reported in this paper is motivated by the increasing importance of distributed sensor

networks as a platform for a number of applications such as habitat monitoring intrusion detection,

defence, and scientific exploration. These applications perform activities that are often a direct

consequence of particular events that take place in the physical environment, and as a consequence

these systems aim to track the location of entities in the external environment, yet this task is often

addressed in ways that are specific to the application at hand.
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Authors think that new tracking-related abstractions should be provided to the programmer of

distributed applications. EnviroTrack is in fact a distributed system that implements such abstractions

in middleware that runs on sensor devices.

It differentiates itself from traditional localization systems that assume cooperative users who, for

example, can wear beaconing devices that interact with location services in the infrastructure for the

purposes of localization and tracking; the authors focus instead on situations where no cooperation is

assumed from the tracked entity.

Envirotrack main goal is to provide a new abstraction based on context labels and tracking objects. In

the architecture context labels are active elements that do not only provide a mechanism for addressing

nodes that sense specific environmental conditions, but also can host context-specific computation that

tracks the target entity in the environment.

As the tracked entity moves, the identity and location of the sensor nodes in its neighbourhood change,

but the tracking object representing it remains the same. The programmer thus interacts with a

changing group of sensor nodes through a simple object interface. Simple language support was

developed to declare tracking objects.

System Architecture

Envirotrack programming model is shown in the figure below.

Figure 4.25: Envirotrack programming model

As we can see sensors that sense a given entity in their proximity form a group. This group is dynamic

as it changes following the entity moves in the physical world. The network abstraction layer

associates each group with a context label which serves as an identifier for the tracked entity.

Applications declare a new context type specifying an activation condition called sense() which is

used by sensors to join and leave the group.

The second part of a context type definition is composed of a given number of context variables that

define what is called aggregate state. This state is an aggregation made up of readings taken by the

various sensors of the group about the sensed entity. Example of this variable could be the average

location for cars or maximum temperature for fires. For each context variable applications define an

aggregation function and two constants: a critical mass Ne and a freshness Le. An aggregate variable

value is significant only if is computed from at least Ne sensor readings at most Te seconds old.
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As shown in Figure 4.25 one or more tracking objects can be attached to each context type constituting

the third and last component that applications set with the goal of performing context-specific

computation. These tracking objects can access the aggregate state and take local action (using

actuators if available) or report some information to a base station. The activation of this computation

can be time-triggered, invoked remotely or based on a predicate on the aggregate state.

The architecture of the system is made up of the following elements:

• EnviroTrack pre-processor: This pre-processor emits NesC code that initialize structures to

track context labels and periodically sense the sense() functions to allow entity discovery. It

also translates definition of context types, for example replacing aggregate variable

references with functions that access the computed state.

• Group management protocol: This protocol manages join and leaves of sensors sensing the

activation condition. In particular it ensures that there is always at least one leader for the

group using heartbeat from the leader and also flood the group surroundings to avoid

creating a new context label as the entity activates new sensors.

• Aggregate state computation: The leader of a group collects readings from sensors of the

group, aggregating values from the last L seconds and marking the result as valid iff it is a

result of at least N readings. Group members send their data to the leader every P seconds

where P=L-d and d is the expected transmission delay.

• Object naming and directory services: Context types are hashed to an (x,y) location which

serves as a directory for that type. Whenever new context labels are created they register on

the directory service their position to allow being found by other objects. As entities move

in the field they leave temporary forwarding pointers behind and occasionally update their

position on the directory service.

• Communication and transport services: Tracking objects can communicate between each

other using context labels as logical addresses which are managed by the group leader of

that context sensor group. A remote method invocation engages the transport protocol for

communication between leaders of the source and destination objects leader. This leader

uses a protocol to identify the location of the remote context using the already mentioned

directory lookup and communicates the message to the remote context leader.

Evaluation

Envirotrack albeit limited to tracking functionality, thus not addressing the querying and monitoring

(wide) application area, it realizes a sound and readily available piece of software.

The design seems to be thought of with energy efficiency in mind, for example all communication to

track the entities are local and energy consumptions seems to be related to maximum speed of the

tracked entity. There is possibly some room for improvement as for example in dense networks the

current scheme does not provide a method to put unnecessary nodes into sleep.

Long range communication is used is for remote procedure call and data reporting. These

communications are based on a sort of directory service built using DHT.

The system exhibits a good degree of fault tolerance: in particular the algorithms are designed to resist

message loss, leader failures, and for example the aggregate state is loosely synchronized to account

for communication failures.

Also the feasibility of the system is demonstrated by the available implementation of the whole

system.

A possible limitation can be spotted in the area of openness and heterogeneity; in fact the system is

implemented on motes at NesC level. This unfortunately prevents the runtime definition and

deployment of new context types, limiting the run-time flexibility of the implementation.
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4.3.10 Sensor Information Networking Architecture and Applications
(SINA)

Issues concerning how information collected by and stored within a sensor network could be queried

and accessed and how concurrent sensing tasks could be executed internally and programmed by

external users are of particular importance. In this article the authors describe a sensor information

networking architecture, called SINA, which facilitates querying, monitoring, and tasking of sensor

networks.

The sensor network is modelled as a collection of massively distributed objects. SINA plays the role of

middleware, allowing sensor applications to issue queries and command tasks into, collect replies and

results from, and monitor changes within the networks.

In contrast to conventional distributed databases in which information is distributed across several

sites, the number of sites in a sensor network equals the number of sensors, and the information

collected by each sensor becomes an inherent part (or attributes) of that node.

To support energy-efficient and scalable operations, sensor nodes are autonomously clustered.

Furthermore, the data-centric nature of sensor information makes it more effectively accessible via an

attribute-based naming approach instead of explicit addresses.

Architecture

SINA architecture consists of the following functional components:

• Hierarchical Clustering: Sensors autonomously forms clusters according to power level

and proximity. This clustering scheme can be applied recursively to form a hierarchy of

clusters. Cluster heads are responsible for filtering fusion and aggregation of information.

Appropriate measures must be taken in order to reorganize the cluster in the case a leader

runs low on battery power or fails unexpectedly.

• Attribute based naming: Since sensors are deployed in high numbers it is often not useful to

address a single node in the network by its identifier. It's a common for application to

address sensors using attributes to specify the target of queries or tasks. For example

common operations might be regarding which area(s) has temperature higher than 100°F or

what is the average temperature in the southeast quadrant, rather than the temperature at

sensor ID#101. SINA offers support for attribute-based naming

• Location Awareness: Due to the fact that sensor nodes operate in physical environments,

knowledge about their own physical locations is crucial. This information can be acquired

directly by GPS receivers for absolute positioning or using optical trackers or other self-

localization mechanisms for computing offset wrt GPS equipped hardware.

• The SINA programming model: In SINA, a sensor network is viewed as a collection of

datasheets; each datasheet contains a collection of attributes of each sensor node. Each

attribute is referred to as a cell, and the collection of datasheets of the network present the

abstraction of an associative spreadsheet, where cells are referred to via attribute-based

names. Initially the datasheet on each node is empty. A node creates a new cell when it

receives a request from other nodes, the value in a cell can be obtained in one of the

following ways:

o referring directly from one or more cells

o invoking a system-defined function

o aggregating values from other sensors' spreadsheets

SINA offers two choices with respect to the language available to program the network: the first is a

declarative language which is based on SQL. Examples of the language shown in figure are used to
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define new cells in the spreadsheet. As an alternative SIENA support SQTL (Sensor Querying and

Tasking Language) which is a light OO procedural language with some kind of support to location

awareness for event handling to facilitate asynchronous programming. Both SQL and SQTL code are

handled by an interpreter albeit they are not presented in the papers.

SQL and SQTL programs are shipped in the network by means of an XML wrapper containing

forwarding information (such as ALL_NODES, NEIGHBORS, etc.) and predicates identifying target

sensors by means of condition on attributes (e.g., [temperature > 30 and area= N-W]). It is runtime

environment's job to discard non relevant messages.

Authors also discuss three general approaches to avoid the response implosion problem affecting

information gathering in sensor networks:

• reduction of nodes involved in a query for dense networks

• random delay of responses to avoid collisions at the mac layer

• in-network aggregation of information which also reduces network traffic

Evaluation

SINA offers a composite middleware platform that is intended to provide applications with an

infrastructure for sensor networks centred on associative spreadsheets. It also defines a new

programming language SQTL with its execution environment.

The main concerns about the whole system are its feasibility and performance as the execution

environment is not detailed at the algorithm level and no actual implementation of the system is

available. As an example the use of associative broadcast raises concerns about the energy efficiency

of such a scheme that are not addressed in the papers.

SINA main achievements are in the area of openness and adaptability, as SQTL code can be shipped

around and can specify coordination of the sensor at a fine granularity to perform a given goal.
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5 Critical Analysis and Conclusions

Chapter 4 of this document presented a number of middleware systems targeting networked embedded

systems. In this section, we want to summarize our findings. Table 5.1 indicates, for each of the

middleware presented, a concise indication of its main purpose and the list of the functional and non

functional requirements addressed by the middleware. The table also reports on the type of system the

middleware is currently targeting.

Middleware Purpose Functional

requirements

addressed

Non-functional

requirements

addressed

Type of

system

targeted

GAIA Context-aware

environments

Event Notification,

Mobility and Location

Awareness, Addressing,

Service Discovery,

Code Updater

Openness Mobile

Hybrid

ExORB Runtime

reconfigurability

Mobility and Location

Awareness, Code

Updater

Heterogeneity

Openness

Adaptability

Mobile

Phones

WSAMI Interoperability in

pervasive

environments

Mobility and Location

Awareness, Service

Discovery

Heterogeneity

Security

Mobile

Hybrid (not

truly ad hoc)

CORTEX Reconfigurable for

different platforms.

Asynchronous

communication based

Mobility and Location

Awareness

Adaptability Mobile

Hybrid (not

truly ad hoc)

AURA Context-aware

through task

migration

Event Notification.

Mobility and Location

Awareness, Service

Discovery

Adaptability

Security

Adaptability

Mobile

Hybrid (not

truly ad hoc)

Oxygen User driven

adaptation framework

Mobility and Location

Awareness, Service

Discovery, Code

Updater

Adaptability

Openness

Security

Mobile

Hybrid

CARISMA Reflective approach

for context awareness

Mobility and Location

Awareness

Adaptability

Openness

Mobile Ad

Hoc (or

Hybrid)

LIME Data sharing in

mobile environments

Event Notification,

Mobility and Location

Awareness

Adaptability

Openness

Failure

Handling

Mobile Ad

Hoc (or

Hybrid)

REDS Content-based

pub/sub on a dynamic

network topology

Event-Notification,

Mobility and Location

Awareness

Fault-tolerance

Scalability

Mobile Ad

Hoc (or

Hybrid)

SATIN Using logical mobility

for adaptation

Mobility and Location

Awareness, Code

Updater

Heterogeneity

Adaptability

Mobile Ad

Hoc (or

Hybrid)
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STEAM Publish subscribe

communication

Event Notification

Mobility and Location

Awareness

Mobile Ad

Hoc

ZEN Real time support Real time Heterogeneity Fixed

Network

Embedded

MiLAN Runtime adaptation to

application

requirements

Cross-layer

communication

Adaptability

Openness

Performance

(energy-

efficiency)

Sensor

Networks

Impala Runtime adaptation to

application

requirements,

dynamic

reprogramming

Cross-layer

communication, Code

Updater

Adaptability

Openness

Performance

(energy-

efficiency)

Sensor

Networks

AutoSec Dynamic service

brokering in a

distributed

environment

Cross-layer

communication, Service

Discovery

Adaptability

Performance

Sensor

Networks

DSWare Data-base like

abstraction

Event notification,

Distributed storage and

lookup

Adaptability

Performance
Sensor

Networks

Adaptive

Middleware for

Distributed

Sensor

Environments

Runtime adaptation to

application

requirements

Cross-layer

communication

Adaptability

Performance

(energy-

efficiency)

Sensor

Networks

EnviroTrack Entity tracking in

sensor network

Multi-hop routing, Time

Synchronization,

Clustering

Performance

(energy-

efficiency)

Failure

handling

Feasibility

Sensor

Networks

Sina Data gathering and

tasking for sensor

networks

Distributed Query-like

interface

Openness

Adaptability

Sensor

Networks

[Y.Yu03b] Application task

allocation

Distributed Task

Scheduler, Clustering

Adaptability

Fault-tolerance

Performance

(energy-

efficiency)

Sensor

Networks

SensorWare Mobile Agent Support

in sensor networks

Code Updater Openness

Heterogeneity

Performance

(energy-

efficiency)

Sensor

Networks



FP6 IP "RUNES" - D5.1  Survey of Middleware for Networked Embedded Systems

IST-004536-RUNES   - D5.1 1.0   - 05/01/2005 Page 72 of 83

TinyLime Data sharing among

applications and

sensors

Wake-up Coordination,

Distributed Tuple Space

Fault tolerance

Adaptability

Transparency

Heterogeneity

Performance

(energy-

efficiency)

Sensor

Networks

Table 5.1: Assessment of overviewed middleware platforms

As we can see from Table 5.1, most of the effort has been put on addressing the requirement of

adaptability in networked embedded systems. These efforts have yielded encouraging results and a

number of well recognized approaches have been developed including service discovery protocols

[SLP], [Avancha02] as used in MiLAN and run-time adaptation protocols as used in Impala and

AutoSeC. This effort is explained due to the dynamic nature of networked embedded systems: wireless

networks with changing topologies, devices that constantly join/leave the formed networks, devices

that run out of power, new applications and users continuously updating their QoS requirements are

some examples of factors that potentially lead to a high degree of dynamism in a networked embedded

environment.

However, although a certain form of adaptability is offered by most of the systems included in our

survey, the adaptation mechanism of the middleware remains static during its lifetime. This means that

it is not possible to use an alternative adaptation mechanism when different adaptive behavior is

required to be performed by the middleware. For example, it is possible that during the lifetime of a

networked embedded system, a new application is introduced demanding a different type of adaptation

than the one offered by the middleware. For this purpose, a new adaptation mechanism should be

selected and configured within the middleware in order to provide the new type of adaptation required

by the application. The problem of selecting and configuring the new adaptation mechanism becomes

more complex considering the demand for autonomous operation of the middleware. Since it not

possible to assume human intervention for management of the middleware operating within a

networked embedded system, intelligent mechanisms such as expert systems should be studied to see

if they can operate within the middleware, such as the middleware itself has the capabilities to

dynamically update its adaptation mechanisms.

Another problem that we can see observing Table II is that although most of the middleware have

addressed the requirement for adaptability, no single middleware exists addressing all the non-

functional requirements of our list. This is due to the assumptions about the application or the types of

embedded devices that the middleware designers have made. For example, some of the work on sensor

networks assumes the existence of a single type of sensors embedded in the environment, thus not

addressing the requirement for heterogeneity. However, in the most general case of a networked

embedded system consisting of many types of devices other than single-type sensors, it is important

that the requirement for heterogeneity is addressed by the middleware.

Another remark is that the requirement of feasibility has not been adequately addressed by existing

middleware systems. However, considering the resources limitations (in hardware and in network

resources) that are potentially present in a networked embedded system, new mechanisms should be

implemented to ensure that the functions or services that the middleware offers to the application are

feasible to be performed in a given system/network instance.

Based on the lessons we learned during this survey in RUNES we will create a middleware solution

for networked embedded system, which fulfils the identified requirements and solves the problems we

have found in existing approaches. The result of this work will be presented in the following

deliverables of WP5.
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A. Appendix - Security and location services

A.1. Cryptographically Generated Addresses

Middleware used on embedded systems focuses on providing a homogeneous set of functions to the

upper layers on different distributed nodes, which helps to abstract the heterogeneity of the node’s

underlying architecture. The benefit of a middleware therefore is to limit the need of adapting upper

layers to the specific environment found on a certain node. In order to do so information needs to be

exchanged between the instantiations of the middleware on these different nodes.

Depending on the functionality of the middleware this information exchange needs to happen in a

more or less secured manner. A first step of such a security can be the authentication of the exchanged

information, that is, the receiving instantiation of a middleware can be really sure that the information

is coming form a certain sending instantiation of the middleware. In a second step the exchanged

information additionally can be encrypted in order to provide confidentiality.

A.1.1. Drawbacks of public / private key authentication

The idea behind Cryptographically Generated Addresses (CGAs) is to have a lightweight mechanism

for authenticating IPv6 packets.

Doing such an authentication today quite often is based on the usage of public/private key

mechanisms. For this purpose the sender of an IPv6 packet needs to generate a public/ private key pair

first, and to use the private key in order to sign the IPv6 packet. In order to verify this signature the

receiver of the IPv6 packets has to know the public key of the sender. For this purpose the sender

could easily send its public key to the receiver, however, if an attacker replaces this public key on the

fly by its own, and sends a faked IPv6 packet signed by its private key, the attacker can hijack a

complete session. Therefore it is absolutely important, that the receiver can be really sure he received

the correct public key from the sender. This guarantee usually is provided by certificates, that is, a

certificate authority trusted by the sender and the receiver will issue a certificate for the sender which

certifies, that a certain public key really belongs to the sender.

Deploying such certificate authorities doesn’t come without costs. For example every node involved in

such a secure communication needs to get into contact with the certificate authority to claim a

certificate for its own source address. This means that all communication partners have to trust the

same authority providing the certificate authority. Then the communication partners have to exchange

their certificates at the beginning of communications. Lastly the nodes have to verify the validity of

the certificates and use then the public key contained within them for verifying the messages.

Looking on embedded systems the use of such Public Key Infrastructures (PKIs) certainly has some

drawbacks:

• Embedded systems are required to contact a certificate authority first in order to apply for a

certificate for the own IPv6 address. Sensor nodes often will be installed plug & play like,

that is, any additional configuration effort such as generating certificates may not be

possible.

• Transmission of large size certificates could be problematic on narrowband links, as they

are often used to connect sensor node.

• Validating the certificates and using the public key in order to verify the received IPv6

packets may consume too many resources in order to be doable on a sensor node.

CGAs provides an alternative mechanism for authenticating IPv6 packets which relaxes some of the

drawbacks described above.
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A.1.2. Overview of CGAs

CGAs are IPv6 addresses, which allow for a secure association of an IPv6 address, the CGA, with a

public key. While this kind of association otherwise is mainly done using certificates, and therefore

requires the deployment of Public Key Infrastructures (PKIs), the CGA approach doesn’t require any

infrastructure at all.

In principle CGAs are generated like all IPv6 addresses by concatenating a 64 bit long subnet prefix

with a 64 bit long identifier. However, in CGAs the identifier additionally reflects the public key

belonging to the CGA, more precisely, the identifier is a hash value formed from a CGA parameter

set, including among others the public key. Knowing these CGA parameters, any receiver of IPv6

packets with a CGA as source address can re-calculate the hash value, and verify if it matches the one

contained in the 64 bit identifier of the packet’s source address. Figure A.1 provides an overview of

the structure of CGAs.

0 1 2 6 7

Subnet prefix (64 bit) CGA specific ID (64 bit)

Cryptographically Generated Address

security

parameter

„u“ bit „g“ bit

Figure A.1: Structure of CGAs

The CGA parameters mentioned above, which are used for calculating the CGA, consist of the

following:

• a 16 octet long modifier, which can be chosen arbitrarily,

• a 8 octet long subnet prefix, which is equal to the subnet prefix of the CGA itself,

• a 1 octet long collision count, as well as

• the public key itself, which can have a variable length.

In order to allow the receiver to verify a CGA, it needs to have the CGA parameters as well as the

CGA itself. The latter one is implicitly provided to the receiver in case it is used as source address in

IPv6 packets. In principal there can be many ways for exchanging CGA parameter, the IETF send WG

for example specified one alternative used for securing the neighbour discovery process.

After a successful verification, the receiver can securely assign a certain public key to an IPv6 address,

information, which is usually provided by certificates. With this information the owner of a CGA can

use its private key in order to sign messages, knowing, that the receiver will be able to associate the

appropriate public key and use this for the verification of the message signature.
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A.1.3. Use of CGAs for embedded systems

CGAs above certainly cannot only be used for authenticating middleware traffic exchanged between

different embedded systems; CGAs can be used more generic in order to authenticate any information

being exchange within IPv6 packets.

CGAs solve some of the issues of public / private key authentication in the area of embedded systems.

For example it is no longer required to deploy PKIs and to first contact a certificate authority in order

to apply for a certificate. Furthermore certificates need no longer to be exchanged over narrowband

links. Instead of this the CGA parameter set needs to be provided to a receiver of CGA packets.

However, currently this exchange is currently only defined in the IETF SEND WG for the usage of

CGAs for securing IPv6 neighbour discovery messages. Therefore a new exchange mechanism would

need to be defined anyway for a more generic usage in the area of embedded systems, and this

exchange could be defined in a less resource consuming way than certificates are exchanged. Also due

to the lack of certificate there is no longer a need for their validation. However, still the verification of

the signature of an IPv6 packet is required, which could still be quite resource consuming. Therefore

this process, as well as the also resource consuming process of generating CGAs, may be delegated in

some scenario to a more powerful node, like a gateway connecting a cloud of sensor to the backbone

network.

Finally it should be noted, that a node using a CGA as source IPv6 address will face some privacy

issues. These issues may be caused by the usage of a fixed CGA identifier in IPv6 source addresses, as

well as by the transmission of the public key within the CGA parameter set.

The issue with the fixed CGA identifier can be addressed by computing several CGAs for the same

public key, and switch between their usages according to the IPv6 privacy extensions specified in RFC

3041. Generating more CGAs for the same public key can be achieved by varying the modifier part of

the CGA parameters. As the computation of CGAs could become computational expensive, one

solution could be a pre-calculation of CGAs on a more powerful node.

The issue with the fixed public key transmitted within the CGA parameter set is more difficult. As the

public key will be visible along the whole path CGA parameters are exchanged, the node owning the

CGA will be traceable in this area.. The only chance to avoid this would be the change of the public

key itself. However, if CGAs are used only in local environments, such as for securing neighbour

discover, one may not be concerned with privacy as tracing a node could here be possible also by other

means like following link layer information. Also using certificates instead of CGAs would cause the

same privacy concerns.

A.2. Host Identity Protocol

As already mentioned above, middleware usually has several instantiations distributed over several

nodes. As all these instantiations need to communicate with each other, each of these instantiations has

to be uniquely identifiable. There identifiers will then be used in order to set up information exchange

between these different instantiations.

A.2.1. Drawbacks with current naming scheme

Currently in the Internet two main name spaces are used, the Internet Protocol with its IPv4 or IPv6

addresses, and the Domain Name Service (DNS). The IP name space reflects the current point of

attachment of a node to the Internet routing infrastructure, that is, an IP address has the functionality of

a locator. Contrary the DNS name space assigns a globally unique name to each node, that is, a DNS

name has the functionality of an identifier.

The IP address has been originally designed with the following properties:
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1. Non-mutable, that is, an address used for sending a packet will be the address when

receiving the packet,

2. Fixed, that is, an IP address of a node doesn’t change during the time the node has a

communication established with another node,

3. Reversible, that is, a packet can always be sent back to the sender by switching the source

and destination address fields of the packet, and

4. Omniscient, that is, a node knows which address a communication partner could use in

order to send packets to the node.

As embedded systems are often connected using wireless technologies, which also allow them to be

mobile and to dynamically change their point of attachment to a backbone network, they frequently

need to change their IP address, that is, the second property listed above doesn’t any longer exist.

Furthermore due to the huge number of mobile nodes it is no longer possible with IPv4 to assign a

globally unique IP address to each of them. Therefore in order to still route their packets via the

Internet, the IP addresses of these embedded systems will have to be translated at a so-called Network

Address Translator (NAT) box into globally unique and therefore routable IP addresses. However, this

causes also the first and the fourth property listed above to exist no longer.

Currently there become already new protocols available, which again introduce these missing

properties of the original design, e.g., IPv6 will provide a sufficiently large address space for re-

introducing property one and four, while Mobile IP provides an efficient support for mobile nodes and

therefore re-introduces property two. However, there is a completely new approach in the process of

standardisation, called the Host Identity Protocol (HIP), which will also re-introduce all lost

properties, but which also re-introduces all the properties listed above, plus provides some additional

features, such as

• an authentication service integrated in the name space,

• a clear separation of interworking layer from the higher layer, and therefore allow their

independent further development, or

• no requirement for an administrative infrastructure to establish and maintain this name

space, that is the names can be generated locally.

A.2.2. Overview of HIP

HIP focuses on the use of a clear separation of the identifier and the locator of a node. For the purpose

of identification HIP assigns to each node a globally unique host identifier, which is generated from a

cryptographically process. In more detail, each node has its own public / private key pair, from which

the public key is used as the host identifier, that is, this kind of host identifier can be generated in a

local manner, and can be used furthermore for authentication services.

For the locator part HIP uses whatever the underlying network is able to provide, e.g., for the Internet

this will mainly be the IPv4 or IPv6 name space. Based on this principle HIP allows the upper layer

and applications to make use of the static host identifier for their communication needs, that is, as

these host identifiers will remain static, the upper layers and the applications can make use of a static

name for their communications peers, which won’t change during the mobility of a node.

Before sending packets via the underlying network, HIP has to map the host identifiers to the name

space of the respective underlying network technology, that is, e.g., to IPv4 or IPv6 addresses. This

design allows HIP to run on different underlying network technologies, and not only on the Internet.

While this property sounds attractive, it currently is not clearly defined how this mapping may occur.

The inclusion of the host identifier into the DNS is one option currently foreseen, however, in case the

respective node is mobile and has to change its IP address, this change needs to be communicated to

the communication peer. The options for doing so, those is, e.g., sending information directly to the
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communication partner, or otherwise for deploying rendezvous point storing the current mapping

between host identifier and IP address, are described only very briefly so far.

In order to make use of its authentication feature, HIP specifies its own security negotiation

mechanism, which results in setting up two unidirectional IPsec security associations between two

communicating HIP nodes. This security negotiation mechanism is called HIP base exchange and is

depicted in Figure A.2.

HIP initiator HIP receiver

Trigger HIP base exchange

Puzzle, Diffie-Hellman Key of receiver

Solution of puzzle, Diffie-Hellman Key of sender

Signature of receiver

Figure A.2: Overview of HIP base exchange

After completing this HIP base exchange all the future HIP payload is exchanged in a protected

manner using Encapsulated Security Payload (ESP) on the established IPsec security associations.

Such a HIP payload e.g., could be the update of the communication peer with a new IP address

recently obtained due to a new point of attachment to the Internet. However, it should be noted that the

HIP specification clearly outlines that the use of public keys as host identifiers and their following use

to set up IPsec security associations is not mandated, but strongly recommended. For using any other

kind of identifiers HIP currently does not specify the relevant functionality.

A.2.3. Use of HIP for embedded systems

Theoretically, HIP can be used as a mechanism to separate locators and identifiers also on embedded

systems. This would bring the tremendous advantage to embedded systems, that they can use the same

identification scheme over different types of underlying internetworking technologies, such as a legacy

IPv4 network, a new IPv6 network, a ZigBee based sensor network, or a vehicle bus system like the

CAN bus. Additional advantages would be the support of the mobility of embedded systems, which

would be completely transparent to the upper layers, plus the authentication and encryption

functionality of HIP, which can be used in order to secure the communication between different

instantiations of the middleware.

However, it also needs to be outlined that the HIP approach is still in the process of standardization,

and therefore parts of it need still some major investigations. For example it needs more work on how

to support mobility and multi-homing based on HIP. Concerning the use of HIP in embedded system

environments also the appropriateness and overhead of the HIP security solution needs to be further

investigated.


